Уточнить поиск
Результаты 1501-1510 из 8,010
Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus Полный текст
2021
Barros, Diana | Pradhan, Arunava | Pascoal, Cláudia | Cássio, Fernanda
Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus Полный текст
2021
Barros, Diana | Pradhan, Arunava | Pascoal, Cláudia | Cássio, Fernanda
Silver nanoparticles (AgNPs) are among the major groups of contaminants of emerging concern for aquatic ecosystems. The massive application of AgNPs relies on the antimicrobial properties of Ag, raising concerns about their potential risk to ecologically important freshwater microbes and the processes they drive. Moreover, it is still uncertain whether the effects of AgNPs are driven by the same mechanisms underlying those of Ag ions (Ag⁺). We employed transcriptomics to better understand AgNP toxicity and disentangle the role of Ag⁺ in the overall toxicity towards aquatic fungi. To that end, the worldwide-distributed aquatic fungus Articulospora tetracladia, that plays a central role in organic matter turnover in freshwaters, was selected and exposed for 3 days to citrate-coated AgNPs (∼20 nm) and Ag⁺ at concentrations inhibiting 20% of growth (EC₂₀). Responses revealed 258 up- and 162 down-regulated genes upon exposure to AgNPs and 448 up- and 84 down-regulated genes under exposure to Ag⁺. Different gene expression patterns were found after exposure to each silver form, suggesting distinct mechanisms of action. Gene ontology (GO) analyses showed that the major cellular targets likely affected by both silver forms were the biological membranes. GO-based biological processes indicated that AgNPs up-regulated the genes involved in transport, nucleobase metabolism and energy production, but down-regulated those associated with redox and carbohydrate metabolism. Ag⁺ up-regulated the genes involved in carbohydrate and steroid metabolism, whereas genes involved in localization and transport were down-regulated. Our results showed, for the first time, distinct profiles of gene expression in aquatic fungi exposed to AgNPs and Ag⁺, supporting different modes of toxicity of each silver form. Also, our results suggest that Ag⁺ had a negligible role in the toxicity induced by AgNPs. Finally, our study highlights the power of transcriptomics in portraying the stress induced by different silver forms in organisms.
Показать больше [+] Меньше [-]Transcriptomics reveals the action mechanisms and cellular targets of citrate-coated silver nanoparticles in a ubiquitous aquatic fungus Полный текст
2021
Barros, Diana | Pradhan, Arunava | Pascoal, Cláudia | Cássio, Fernanda
Silver nanoparticles (AgNPs) are among the major groups of contaminants of emerging concern for aquatic ecosystems. The massive application of AgNPs relies on the antimicrobial properties of Ag, raising concerns about their potential risk to ecologically important freshwater microbes and the processes they drive. Moreover, it is still uncertain whether the effects of AgNPs are driven by the same mechanisms underlying those of Ag ions (Ag+). We employed transcriptomics to better understand AgNP toxicity and disentangle the role of Ag+ in the overall toxicity towards aquatic fungi. To that end, the worldwide-distributed aquatic fungus Articulospora tetracladia, that plays a central role in organic matter turnover in freshwaters, was selected and exposed for 3 days to citrate-coated AgNPs (∼20 nm) and Ag+ at concentrations inhibiting 20% of growth (EC20). Responses revealed 258 up- and 162 down-regulated genes upon exposure to AgNPs and 448 up- and 84 down-regulated genes under exposure to Ag+. Different gene expression patterns were found after exposure to each silver form, suggesting distinct mechanisms of action. Gene ontology (GO) analyses showed that the major cellular targets likely affected by both silver forms were the biological membranes. GO-based biological processes indicated that AgNPs up-regulated the genes involved in transport, nucleobase metabolism and energy production, but down-regulated those associated with redox and carbohydrate metabolism. Ag+ up-regulated the genes involved in carbohydrate and steroid metabolism, whereas genes involved in localization and transport were down-regulated. Our results showed, for the first time, distinct profiles of gene expression in aquatic fungi exposed to AgNPs and Ag+, supporting different modes of toxicity of each silver form. Also, our results suggest that Ag+ had a negligible role in the toxicity induced by AgNPs. Finally, our study highlights the power of transcriptomics in portraying the stress induced by different silver forms in organisms. | Emergemix project (PTDC/BIA-BMA/30922/2017). D. Barros (SFRH/BD/80407/2011)
Показать больше [+] Меньше [-]Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area: Occurrence, influencing factors, and relationships with thyroid and liver function Полный текст
2021
Zhao, Xuezhen | Yang, Xiaodi | Du, Yinglin | Li, Renbo | Zhou, Tao | Wang, Yuwei | Chen, Tian | Wang, Dejun | Shi, Zhixiong
Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants (FRs) in China for decades, even after they were identified as persistent organic pollutants. In this study, serum samples were collected from 172 adults without occupational exposure who were residents of a well-known FR production region (Laizhou Bay, north China), and PBDE congeners were measured to assess their occurrence, congener profile and influencing factors in serum. Moreover, the relationships between serum concentrations of PBDEs and thyroid/liver function indicators were analyzed to evaluate whether human exposure to PBDEs would lead to thyroid/liver injury. All 8 PBDE congeners were detected at higher frequencies and serum concentrations than those found in general populations. The median levels of ∑PBDEs, BDE-209 and ∑₃₋₇PBDEs (sum of tri-to hepta-BDEs) were 64.5, 56.9 and 7.2 ng/g lw (lipid weight), respectively, which indicated that deca-BDE was the primarily produced PBDE in Laizhou Bay and that the lower brominated BDEs were still ubiquitous in the environment. Gender was a primary influencing factor for some BDE congeners in serum; their levels in female serum samples were significantly lower than those in male serum samples. Serum PBDE levels showed a downward trend with increased body mass index (BMI), which might reflect the increasing serum lipid contents. Serum levels of some BDE congeners were significantly positively correlated with certain thyroid hormones and antibodies, including free triiodothyronine (fT3), total triiodothyronine (tT3), total thyroxine (tT4) and thyroid peroxidase antibody (TPO-Ab). Levels of some congeners were significantly negatively correlated with some types of serum lipid, including cholesterol (CHOL), low density lipoprotein (LDL) and total triglyceride (TG). Other than serum lipids, only two liver function indicators, total protein (TP) and direct bilirubin (DBIL), were significantly correlated with certain BDE congeners (BDE-100 and BDE-154). Our results provide new evidence on the thyroid-disrupting and hepatotoxic effects of PBDEs.
Показать больше [+] Меньше [-]Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylation-specific modulation of the sex determination pathway Полный текст
2021
Hu, Junjie | Yang, Yan | Lv, Xiaomei | Lao, Zhilang | Yu, Lili
Dichlorodiphenyltrichloroethane (DDT) poses a significant health risk to humans which is associated with genomic DNA hypomethylation. However, the mechanism and biological consequences remain poorly understood. In vitro assays confirmed that the DDT metabolites 2,2-bis(p-chlorophenyl)-acetic acid (DDA) and 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (DDMU), but not other DDT metabolites, significantly inhibited DNA methyltransferase 1 (DNMT1) activity, leading to genomic hypomethylation in cell culture assays. DNMT1 as a target for DNA hypomethylation induced by DDT metabolites was also confirmed using cell cultures in which DNMT1 was silenced or highly expressed. DDA and DDMU can modify methylation markers in the promoter regions of sexual development-related genes, and change the expression of Sox9 and Oct4 in embryonic stem cells. Molecular docking indicated that DDA and DDMU bound to DNMT1 with high binding affinity. Molecular dynamic simulation revealed that DDA and DDMU acted as allosteric modulators that reshaped the conformation of the catalytic domain of DNMT1. These findings provide a new insight into DDT-induced abnormalities in sexual development and demonstrate that selective binding to DNMT1 by DDA and DDMU can interfere with human DNMT1 activity and regulate the expression of the Sox9 and Oct4 genes.
Показать больше [+] Меньше [-]Targeting the right parameters in PAH remediation studies Полный текст
2021
Davin, Marie | Colinet, Gilles | Fauconnier, Marie-Laure
Targeting the right parameters in PAH remediation studies Полный текст
2021
Davin, Marie | Colinet, Gilles | Fauconnier, Marie-Laure
Contaminated land burdens the economy of many countries and must be dealt with.Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms.The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management.First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges.Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material.Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
Показать больше [+] Меньше [-]Targeting the right parameters in PAH remediation studies Полный текст
2021
Davin, Marie | Colinet, Gilles | Fauconnier, Marie-Laure
peer reviewed | Contaminated land burdens the economy of many countries and must be dealt with. Researchers have published thousands of documents studying and developing soil and sediment remediation treatments. Amongst the targeted pollutants are the polycyclic aromatic hydrocarbons (PAHs), described as a class of persistent organic compounds, potentially harmful to ecosystems and living organisms. The present paper reviews and discusses three scientific trends that are leading current PAH-contaminated soil/sediment remediation studies and management. First, the choice of compounds that are being studied and targeted in the scientific literature is discussed, and we suggest that the classical 16 US-EPA PAH compounds might no longer be sufficient to meet current environmental challenges. Second, we discuss the choice of experimental material in remediation studies. Using bibliometric measures, we show the lack of PAH remediation trials based on co-contaminated or aged-contaminated material. Finally, the systematic use of the recently validated bioavailability measurement protocol (ISO/TS 16751) in remediation trials is discussed, and we suggest it should be implemented as a tool to improve remediation processes and management strategies.
Показать больше [+] Меньше [-]An integrated method for source apportionment of heavy metal(loid)s in agricultural soils and model uncertainty analysis Полный текст
2021
Wang, Yuntao | Guo, Guanghui | Zhang, Degang | Lei, Mei
Elevated concentrations of heavy metals in agricultural soils threatening ecological security and the quality of agricultural products, and apportion their sources accurately is still a challenging task. Multivariate statistical analysis, GIS mapping, Pb isotopic ratio analysis (IRA), and positive matrix factorization (PMF) were integrated to apportion the potential sources of heavy metal(loid)s of orchard soil in Karst-regions. Study region soils were moderately contaminated by Cd. Obvious enrichment and moderate contamination level of Cd were found in study region surface soils, followed by As, Zn, and Pb. Correlation analysis (CA) and principal component analysis (PCA) indicated Ba, Co, Cr, Ni, V were mainly from natural sources, while As, Cd, Cu, Pb, Zn were derived from two kinds of anthropogenic sources. Based on Pb isotope composition, atmospheric deposition and livestock manure were the main sources of soil Pb accumulation. Further source identification and quantification results with PMF model and GIS mapping revealed that soil parent materials (46.44%) accounted for largest contribution to the soil heavy metal(loid)s, followed by fertilizer application (31.37%) and mixed source (industrial activity and manure, 22.19%). Uncertainty analysis indicated that the three-factors solution of PMF model was an optimal explanation and the heavy metal(loid) with lower percentage contributions had higher uncertainty. This study results can help to illustrate the sources of heavy metals more accurately in orchard agricultural soils with a clear expected future for further applications.
Показать больше [+] Меньше [-]Species-specific impact of microplastics on coral physiology Полный текст
2021
Mendrik, F.M. | Henry, T.B. | Burdett, H. | Hackney, C.R. | Waller, C. | Parsons, D.R. | Hennige, S.J.
There is evidence that microplastic (MP) pollution can negatively influence coral health; however, mechanisms are unknown and most studies have used MP exposure concentrations that are considerably higher than current environmental conditions. Furthermore, whether MP exposure influences coral susceptibility to other stressors such as ocean warming is unknown. Our objective was to determine the physiology response of corals exposed to MP concentrations that have been observed in-situ at ambient and elevated temperature that replicates ocean warming. Here, two sets of short-term experiments were conducted at ambient and elevated temperature, exposing the corals Acroporasp. and Seriatopora hystrix to microspheres and microfibres. Throughout the experiments, gross photosynthesis and net respiration was quantified using a 4-chamber coral respirometer, and photosynthetic yields of photosystem II were measured using Pulse-Amplitude Modulated (PAM) fluorometry. Results indicate the effect of MP exposure is dependent on MP type, coral species, and temperature. MP fibres (but not spheres) reduced photosynthetic capability of Acropora sp., with a 41% decrease in photochemical efficiency at ambient temperature over 12 days. No additional stress response was observed at elevated temperature; photosynthetic performance significantly increased in Seriatopora hystrix exposed to MP spheres. These findings show that a disruption to coral photosynthetic ability can occur at MP concentrations that have been observed in the marine environment and that MP pollution impact on corals remains an important aspect for further research.
Показать больше [+] Меньше [-]Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters Полный текст
2021
López-Velázquez, Khirbet | Guzmán-Mar, Jorge L. | Saldarriaga-Noreña, Hugo A. | Murillo-Tovar, Mario A. | Hinojosa-Reyes, Laura | Villanueva-Rodríguez, Minerva
Five endocrine-disrupting compounds (EDCs) were determined in four urban wastewater treatment plants (WWTPs) of the Metropolitan Area of Monterrey (MAM) in two seasonal periods (winter and summer). The MAM, one of the most urbanized areas in Mexico, is characterized by high industrial activity and population density, leading to extensive use of several EDCs. In the MAM, ∼90% of urban and industrial wastewater is treated in WWTPs, where EDCs can be partially eliminated. In this work, dissolved levels of 17β-estradiol (E2), 17α-ethinyl estradiol (EE2), bisphenol A (BPA), 4-nonylphenol (4NP), and 4-tert-octylphenol (4TOP) in wastewater were determined. The EDCs’ determination was carried out through solid-phase extraction (SPE) and gas chromatography coupled to mass spectrometry (GC-MS). High EDCs levels (0.4–450 ng/L) were found in the influents of WWTPs, while concentrations in the effluents ranged from 0.2 to 26.8 ng/L, with E2, EE2, and 4TOP being the most persistent. The Spearman correlation analysis revealed the association between E2 and EE2 (r = 0.4835, p < 0.05), and between BPA and 4NP (r = 0.5180, p < 0.05), suggesting that these EDCs have similar sources. Also, E2, BPA, and 4TOP were positively correlated with the chemical oxygen demand (COD), biochemical oxygen demand (BOD), and total suspended solids (TSS) (r = 0.4080–0.5694, p < 0.05), indicating the association of the EDCs with the organic matter in the wastewater. The factor analysis confirmed the significant correlation of COD, BOD, TSS, temperature, and pH with the high occurrence of 4TOP during the summer. It was also confirmed that summer warmer temperatures favored the removal of BPA and 4NP in the studied WWTPs. Finally, the studied sites were classified by cluster analysis in three groups, revealing the impact that seasonality has on the behavior of the selected EDCs.
Показать больше [+] Меньше [-]Toxic effects of exposure to microplastics with environmentally relevant shapes and concentrations: Accumulation, energy metabolism and tissue damage in oyster Crassostrea gigas Полный текст
2021
Teng, Jia | Zhao, Jianmin | Zhu, Xiaopeng | Shan, Encui | Zhang, Chen | Zhang, Wenjing | Wang, Qing
Microplastics (MPs) are widely found in coastal areas and oceans worldwide. The MPs are environmentally concerning due to their bioavailability and potential impacts on a wide range of marine biota, so assessing their impact on the biota has become an urgent research priority. In the present study, we exposed Crassostrea gigas oysters to irregular MPs of two polymer types (polyethylene (PE) and polyethylene terephthalate (PET)) at concentrations of 10 and 1000 μg L⁻¹ for 21 days. Accumulation of MPs, changes in metabolic enzyme activity, and histological damage were evaluated, and metabolomics analysis was conducted. Results demonstrated that PE and PET MPs were detected in the gills and digestive gland following exposure to both tested concentrations, confirming ingestion of MPs by the organisms. Moreover, both PE and PET MPs inhibited lipid metabolism, while energy metabolism enzyme activities were activated in the oysters. Histopathological damage of exposed oysters was also observed in this study. Integrated biomarker response (IBR) results showed that MPs toxicity increased with increasing MPs concentration, and the toxic effects of PET MPs on oysters was greater than PE MPs. In addition, metabolomics analysis suggested that MPs exposure induced alterations in metabolic profiles in oysters, with changes in energy metabolism and inflammatory responses. This study reports new insights into the consequences of MPs exposure in marine bivalves at environmentally relevant concentrations, providing valuable information for ecological risk assessment of MPs in a realistic conditions.
Показать больше [+] Меньше [-]C-offset and crop energy efficiency increase due industrial poultry waste use in long-term no-till soil minimizing environmental pollution Полный текст
2021
Romaniw, Jucimare | de Moraes Sá, João Carlos | Lal, R. | de Oliveira Ferreira, Ademir | Inagaki, Thiago Massao | Briedis, Clever | Gonçalves, Daniel Ruiz Potma | Canalli, Lutécia Beatriz | Padilha, Alessandra | Bressan, Pamela Thaísa
Brazil is one of the major global poultry producers, and the organic waste generated by the chicken slaughterhouses can potentially be used as a biofertilizer in agriculture. This study was designed to test the hypothesis that continuous use of biofertilizer to the crops, substituting the use of mineral fertilizer promote C-offset for the soil and generate crop energy efficiency for the production system. Thus, the objectives of this study were to evaluate the effects of biofertilizer use alone or in combination with mineral fertilizer on soil organic carbon (SOC) stock, carbon dioxide (CO₂) mitigation, C-offset, crop energy efficiency and productivity, and alleviation of environmental pollution. The experiment was established in southern Brazil on a soil under 15 years of continuous no-till (NT). Experimental treatments were as follows: i) Control with no fertilizer application, ii) 100% use of industrial mineral fertilizer (Min-F); iii) 100% use of organic waste originated from poultry slaughterhouses and hereinafter designated biofertilizer (Bio-F), and iv) Mixed fertilizer equivalent to the use of 50% mineral fertilizer + 50% of biofertilizer (Mix-F). Effects of experimental treatments were assessed for the crop sequence based on bean (Phaseolus vulgaris), soybean (Glycine max) and corn (Zea mays) in the summer and wheat (Triticum aestivum) and black oat (Avena strigosaSchreb) in the winter composing two crops per year, as follow: bean/wheat-soybean/black oat-corn/wheat-soybean/black oat-corn/wheat-bean. The continuous use of Bio-F treatment significantly increased the index of crop energy efficiency. It was higher than that of control, and increased it by 25.4 Mg CO₂eq ha⁻¹ over that of Min-F treatment because of higher inputs of crop biomass-C into the system. Further, continuous use of Bio-F resulted in a significantly higher CO₂eq stock and offset than those for Min-F treatment. A positive relationship between the C-offset and the crop energy efficiency (R² = 0.71, p < 0.001) indicated that the increase of C-offset was associated with the increase of energy balance and the amount of SOC sequestered. The higher energy efficiency and C-offset by application of Bio-F indicated that the practice of crop bio fertilization with poultry slaughterhouse waste is a viable alternative for recycling and minimizing the environmental impacts.
Показать больше [+] Меньше [-]Occurrence and distribution of antimicrobial resistance genes in the soil of an industrial park in China: A metagenomics survey Полный текст
2021
Zheng, Beiwen | Liu, Wenhong | Xu, Hao | Li, Junfeng | Jiang, Xiawei
As zoned areas of industries, industrial parks have great impacts on the environment. Several studies have demonstrated that chemical compounds and heavy metals released from industrial parks can contaminate soil, water, and air. However, as an emerging pollutant, antimicrobial resistance genes (ARGs) in industrial parks have not yet been investigated. Here, we collected soil samples from 35 sites in an industrial park in China and applied a metagenomics strategy to profile the ARGs and virulence factors (VFs). We further compared the relative abundance of ARGs between the sites (TZ_31–35) located in a beta-lactam antimicrobial-producing factory and other sites (TZ_1–30) in this industrial park. Metagenomic sequencing and assembly generated 14, 383, 065 contigs and 17, 631, 051 open reading frames (ORFs). Taxonomy annotation revealed Proteobacteria and Actinobacteria as the most abundant phylum and class, respectively. The 32 pathogenic bacterial genera listed in the virulence factor database (VFDB) were all identified from the soil metagenomes in this industrial park. In total, 685,354 ARGs (3.89% of the ORFs) and 272,694 virulence factors (VFs) (1.55% of the ORFs) were annotated. These ARGs exhibited resistance to several critically important antimicrobials, such as rifampins, fluroquinolones, and beta-lactams. In addition, no significant difference in the relative abundance of ARGs was observed between sites TZ_31–35 and TZ_1–30, indicating that ARGs have already disseminated widely in this industrial park. The present study gave us a better understanding of the whole picture of the resistome and virulome in the soil of the industrial park and suggested that we should treat the industrial park as a whole in the surveillance and maintenance of ARGs.
Показать больше [+] Меньше [-]