Уточнить поиск
Результаты 1531-1540 из 8,010
Sustainable valorisation pathways mitigating environmental pollution from brewers’ spent grains Полный текст
2021
Kavalopoulos, Michael | Stoumpou, Vasileia | Christofi, Andreas | Mai, Sofia | Barampouti, Elli Maria | Moustakas, Konstantinos | Malamis, Dimitris | Loizidou, Maria
In this work, valorisation pathways of brewers’ spent grains (BSG) towards biofuels production under the biorefinery concept were studied utilizing experimental data that provide a common base for straightforward comparison. The dehydration and the recovery of used oil, bioethanol and biogas from BSG were studied. The process units involved were thoroughly investigated and optimized. The oil extraction efficiency reached up to 70% using solid-liquid extraction process with hexane as solvent. The optimal ethanol yield achieved was 45% after the application of acid pretreatment, enzymatic hydrolysis with CellicCTec2 and fermentation with S. Cerevisiae. As far as biogas potential is concerned, the raw BSG, defatted BSG and stillage presented values equal to 379 ± 19, 235 ± 21 and 168 ± 39 mL biogas/g for respectively. Through the combination of the proposed schemes, three biorefinery scenarios were set up able to produce biodiesel, bioethanol and/or biogas. Material flow diagrams were set up in order to assess these schemes. Given that BSG could ensure ‘green’ energy production in the range of 4.5–7.0 million MJ/y if the European BSG potential is fully valorised, BSG could substantially contribute to the biofuel energy strategy.
Показать больше [+] Меньше [-]Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina Полный текст
2021
Massello, Francisco L. | Donati, Edgardo
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Показать больше [+] Меньше [-]Relative importance of aqueous leachate versus particle ingestion as uptake routes for microplastic additives (hexabromocyclododecane) to mussels Полный текст
2021
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Cho, Youna | Moon, Yelim | Hong, Sang Hee
Microplastic pollution is emerging as a global environmental issue, and its potential for transferring hazardous chemicals to aquatic organisms is gaining attention. Studies have investigated the transfer of chemicals, mainly sorbed chemicals, through ingestion of microplastics by organisms, but limited information is available regarding chemical additives and uptake via the aqueous route through plastic leaching. In this study, we compared two bioaccumulation pathways of the additive hexabromocyclododecane (HBCD) by exposing mussels (Mytilus galloprovincialis) to two different sizes of expanded polystyrene (EPS): inedible size (4.2–5.5 mm) for leachate uptake and edible size (20–770 μm) for particle ingestion and leachate uptake. Over 10 days, the HBCD concentration increased significantly in mussels in the EPS exposure groups, indicating that EPS microplastic acts as a source of HBCD to mussels. The concentration and isomeric profiles of HBCD in mussels show that uptake through the aqueous phase is a more significant pathway for bioaccumulation of HBCD from EPS to mussels than particle ingestion. HBCD levels measured in EPS, leachate and exposed mussels from this study are environmentally relevant concentration. The fate and effects of chemical additives leached from plastic debris in ecosystem requires further investigation, as it may affect numerous environments and organisms through the aqueous phase.
Показать больше [+] Меньше [-]Spatial and seasonal variation of microplastics and possible sources in the estuarine system from central west coast of India Полный текст
2021
Gupta, Priyansha | Saha, Mahua | Rathore, Chayanika | Suneel, V. | Ray, Durbar | Naik, Akshata | K, Unnikrishnan | M, Dhivya | Daga, Krushi
The versatile use of various synthetic polymers, including plastics, generates a large volume of non-degradable waste, which is eventually responsible for forming microplastics (MPs) in aquatic environments. The present study describes the significant spatial and seasonal variation on the abundance of MPs and their physiochemical nature along the Mandovi-Zuari estuarine system of Goa, west coast of India. During the wet season (September), the average abundance of MPs was found relatively higher in water (0.107 particles/m³) and sediment (7314 particles/kg) than those found in the dry season (April) (0.099 particles/m³ in water and 4873 particles/kg in sediment). During the wet season, heavy rain and excessive riverine freshwater influx carry more terrestrial plastic debris in the estuarine system which causes higher averages MPs density in surface water and sediment. <300 μm sized particles and black colored MPs were predominant equally in water and sediment during both seasons. MPs of different shapes like fragments, fibres, films and beads accounted for most collected samples. The Micro-Fourier Transform Infrared Spectroscopy (μ-FTIR) based compositional analysis identified approximately 33 types of polymers, of which polyacrylamide (PAM), polyacetylene, polyamide (PA), polyvinyl pyrrolidone (PVP), polyvinyl chloride (PVC), and polyimide (PI) were abundant. Fragmentation of larger plastic particles due to mismanaged treated and untreated STPs and washing machine effluents are the primary sources of these MPs in the estuarine system. Moreover, these estuaries also receive a variety of domestic, industrial and other wastes from local cities, ports, and fishing jetties. Thus the present study enlightens the current distribution of MPs and their sources in the Mandovi-Zuari estuarine system and thus provides very useful information to the stakeholder and concerned departments for initiating the mitigation measures.
Показать больше [+] Меньше [-]Transboundary transport of ozone pollution to a US border region: A case study of Yuma Полный текст
2021
Qu, Zhen | Wu, Dien | Henze, Daven K. | Li, Yi | Sonenberg, Mike | Mao, Feng
High concentrations of ground-level ozone affect human health, plants, and animals. Reducing ozone pollution in rural regions, where local emissions are already low, poses challenge. We use meteorological back-trajectories, air quality model sensitivity analysis, and satellite remote sensing data to investigate the ozone sources in Yuma, Arizona and find strong international influences from Northern Mexico on 12 out of 16 ozone exceedance days. We find that such exceedances could not be mitigated by reducing emissions in Arizona; complete removal of state emissions would reduce the maximum daily 8-h average (MDA8) ozone in Yuma by only 0.7% on exceeding days. In contrast, emissions in Mexico are estimated to contribute to 11% of the ozone during these exceedances, and their reduction would reduce MDA8 ozone in Yuma to below the standard. Using satellite-based remote sensing measurements, we find that emissions of nitrogen oxides (NOₓ, a key photochemical precursor of ozone) increase slightly in Mexico from 2005 to 2016, opposite to decreases shown in the bottom-up inventory. In comparison, a decrease of NOₓ emissions in the US and meteorological factors lead to an overall of summer mean and annual MDA8 ozone in Yuma (by ∼1–4% and ∼3%, respectively). Analysis of meteorological back-trajectories also shows similar transboundary transport of ozone at the US-Mexico border in California and New Mexico, where strong influences from Northern Mexico coincide with 11 out of 17 and 6 out of 8 ozone exceedances. 2020 is the final year of the U.S.-Mexico Border 2020 Program, which aimed to reduce pollution at border regions of the US and Mexico. Our results indicate the importance of sustaining a substantial cooperative program to improve air quality at the border area.
Показать больше [+] Меньше [-]Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China Полный текст
2021
Zhang, Jiajia | He, Ping | Ding, Wencheng | Ullah, Sami | Abbas, Tanveer | Li, Mingyue | Ai, Chao | Zhou, Wei
Nitrate leaching caused by overusing or misusing nitrogen (N) fertilizers in field vegetable cropping systems in China is a leading contributor to nitrate contamination of groundwater. Identification of the critical fertilizer N input rate could support management decisions that maintain yields while reducing the impact of nitrate leaching on groundwater. A four-season field experiment involving six N treatments (0, 60, 120, 180, 240, and 300 kg N ha⁻¹) was undertaken to investigate the impacts of various N rates on N use efficiency (NUE), seasonal nitrate leaching loss (SNLL), nitrate residue (NR), and radish yield, and to identify the critical N fertilizer rate for both optimum yield and minimum nitrate leaching loss in a field vegetable (radish, Raphanus sativus L.) cropping system in northern China. The results showed that radish yield enhanced quadratically and NUE reduced linearly with increasing N addition, while the NR and SNLL increased exponentially. The yield did not increase markedly when N fertilization exceeded 180 kg N ha⁻¹. SNLL and nitrate concentrations in the leachate averaged 11.5–71.5 kg N ha⁻¹ and 5.1–35.6 mg N L⁻¹, respectively, under N rates of 60–300 kg N ha⁻¹. The results showed that N fertilizer rate ranging from 180 to 196 kg N ha⁻¹ resulted in high yields and low nitrate leaching losses. Compared with those in response to the N fertilizer amount applied by local farmers, the NUE, NR, and SNLL in response to the N fertilizer amount identified in this study increased, decreased by 30.9%–35.0%, and decreased by 49.9%–55.7%, respectively, without any yield loss. Thus, a critical N fertilizer rate ranging from 180 to 196 kg N ha⁻¹ is recommended to obtain optimum yields with minimal environmental risks in radish fields in northern China.
Показать больше [+] Меньше [-]Exposure to GenX and its novel analogs disrupts fatty acid metabolism in male mice Полный текст
2021
Guo, Hua | Sheng, Nan | Guo, Yong | Wu, Chengying | Xie, Weidong | Dai, Jiayin
Perfluoroalkyl ether carboxylic acids (PFECAs), including hexafluoropropylene oxide dimer acid (HFPO-DA, GenX), have been widely used as alternatives to perfluorooctanoic acid (PFOA) and subsequently detected in various environmental matrices. Despite this, public information regarding their hepatotoxicity remains limited. Here, to compare the hepatotoxicity of PFECAs and identify better alternatives for GenX, adult male mice were exposed to different concentrations (0.4, 2, and 10 mg/kg/d) of PFOA, GenX, and its analogs (PFMO2HpA and PFMO3NA) for 28 d. Results demonstrated increased hepatomegaly and disturbed fatty acid metabolism with increasing treatment doses. After dimensionality reduction analysis, significant differences were observed in the relative liver weights and liver and serum biochemical parameters among the four clusters. Furthermore, when chemical concentrations in the liver were similar, no differences in the indicators of liver injury associated with fatty acid metabolism were observed among groups in the same clusters. Our results suggest that dimensionality reduction analysis is a useful strategy for analyzing samples exposed to multiple compounds at different doses. Furthermore, PFECAs exhibit similar hepatotoxicities at the same cumulative hepatic concentration in mice with constant body weight, while PFMO2HpA exhibits lower hepatotoxicity compared to GenX at the same dose.
Показать больше [+] Меньше [-]Co-exposure and health risks of parabens, bisphenols, triclosan, phthalate metabolites and hydroxyl polycyclic aromatic hydrocarbons based on simultaneous detection in urine samples from guangzhou, south China Полный текст
2021
Polycyclic aromatic hydrocarbons (PAHs) and certain ingredients in personal care products, such as parabens, bisphenols, triclosan and phthalate metabolites, have become ubiquitous in the world. Concerns of human exposure to these pollutants have increased during recent years because of various adverse health effects of these chemicals. Multiple compounds including parabens, bisphenols, triclosan, phthalate metabolites (mPAEs) and hydroxyl PAHs (OH-PAHs) in urine samples from Guangzhou were determined simultaneously to identify the human exposure pathways without external exposure data combined with data analysis, and the toxicants posed the highest risk to human health were screened in the present study. The detection frequencies for the chemicals exceeded 90%. Among the contaminants, mPAEs showed the highest concentrations, followed by OH-PAHs, with triclosan present at the lowest concentrations. Mono-n-butyl phthalate, methylparaben, bisphenol A, and hydroxynaphthalene represented the most abundant mPAE, parabens, bisphenol, and OH-PAH compounds, respectively. The present PAHs are mainly exposed to human through inhalation, while the chemicals added to personal care products are mainly exposed to human through oral intake and dermal contact. The urine samples from suburban subjects showed significantly higher OH-PAH levels than the urine samples from urban subjects, and females had lower OH-PAH levels than males. Urinary concentrations of the analyzed contaminants were significantly correlated with age, body mass index, residence time, as well as the frequencies of alcohol consumption and swimming. Risk assessments based on Monte Carlo simulation indicated that approximately 30% of the subjects suffered non-carcinogenic risks from mPAEs and OH-PAHs, with mPAEs accounting for 89% of the total risk.
Показать больше [+] Меньше [-]Java plum and amaltash seed biomass based bio-adsorbents for synthetic wastewater treatment Полный текст
2021
Giri, Deen Dayal | Jha, Jay Mant | Tiwari, Amit Kumar | Srivastava, Neha | Abd Elkhalek Mahmoud, Abeer Hashem | Alqarawi, Abdulaziz A. | Abd_Allah, Elsayed Fathi | Pal, Dan Bahadur
Biomass of Java plum (JP) and amaltash (AT) seeds were employed to remove arsenic from synthetic wastewater, cost effectively. The prepared biomasses were characterized by FE-SEM, EDX, FTIR, XRD, and ICP techniques. Experimentation the optimization study has been carried out by using Design-software 6.0.8. Response surface methodology has been applied to design the experiments where we have used three factors and three levels Box-Behnken design (BBD). Arsenic removal ability of bio-sorbents was evaluated and optimized by varying pH, adsorbent dose concentration of arsenic in synthetic wastewater. For 2.5 mg/L arsenic concentration and 80 mg adsorbent dose at pH 8.8 Java plum seeds (JP) based bio-adsorbent removed ∼93% and amaltash seeds (AT) based bio-adsorbent removed ∼91% arsenic from synthetic wastewater. The adsorption behaviour better explained following Freundlich model (R² = 0.99) compared to Temkin model (R² = 0.986) for As (III) ions. The adsorption capacity was 1.45 mg g⁻¹ and 1.42 mg g⁻¹ for JP and AT, respectively after 80 min under optimal set of condition. The adsorption kinetics was explained by either pseudo-first order model or Elovich model.
Показать больше [+] Меньше [-]Agrochemicals in freshwater systems and their potential as endocrine disrupting chemicals: A South African context Полный текст
2021
Horak, Ilzé | Horn, Suranie | Pieters, Rialet
South Africa is the largest agrochemical user in sub-Saharan Africa, with over 3000 registered pesticide products. Although they reduce crop losses, these chemicals reach non-target aquatic environments via leaching, spray drift or run-off. In this review, attention is paid to legacy and current-use pesticides reported in literature for the freshwater environment of South Africa and to the extent these are linked to endocrine disruption. Although banned, residues of many legacy organochlorine pesticides (endosulfan and dichlorodiphenyltrichloroethane (DDT)) are still detected in South African watercourses and wildlife. Several current-use pesticides (triazine herbicides, glyphosate-based herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and chlorpyrifos) have also been reported. Agrochemicals can interfere with normal hormone function of non-target organism leading to various endocrine disrupting (ED) effects: intersex, reduced spermatogenesis, asymmetric urogenital papillae, testicular lesions and infertile eggs. Although studies investigating the occurrence of agrochemicals and/or ED effects in freshwater aquatic environments in South Africa have increased, few studies determined both the levels of agricultural pesticides present and associated ED effects. The majority of studies conducted are either laboratory-based employing in vitro or in vivo bioassays to determine ED effects of agrochemicals or studies that investigate environmental concentrations of pesticides. However, a combined approach of bioassays and chemical screening will provide a more comprehensive overview of agrochemical pollution of water systems in South Africa and the risks associated with long-term chronic exposure.
Показать больше [+] Меньше [-]