Уточнить поиск
Результаты 1551-1560 из 1,956
Preparation and characterization of magnetic Fe₃O ₄/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI) Полный текст
2013
Chen, Runhua | Chai, Liyuan | Li, Qinzhu | Shi, Yan | Wang, Yangyang | Mohammad, Ali
This work described a novel method for the synthesis of high-ferromagnetism nanoparticles (FeO/CNTs) to efficiently remove Cr(VI) from aqueous solution. The FeO/carbon nanotubes (CNTs) were prepared by in situ reduction with post-oxidation method by using cheap and environmentally friendly precursor under mild condition. Magnetic hysteresis loops revealed that FeO/CNTs had superior saturation magnetization (152 emu/g), enabling the highly efficient recovery of FeO/CNTs from aqueous solution by magnetic separation at low magnetic field gradients. FTIR, Raman, XPS, and TEM observations were employed to characterize the physical-chemical properties of FeO/CNTs, demonstrating that CNTs were successfully coated with iron oxide matrix. The adsorption equilibrium of Cr(VI) on FeO/CNTs was reached within 30 min. Langmuir, Freundlich, and Dubinin-Radushkevich isotherm were chosen to analyze the equilibrium data. The results indicated that Langmuir model can well describe the equilibrium data with the maximum adsorption capacity of 47.98 mg/g at room temperature and 83.54 mg/g at 353 K. The adsorption capacity of FeO/CNTs for Cr(VI) was greatly improved as compared to raw CNTs and other similar adsorbents reported. The pseudo-second-order kinetic model provided the best description of Cr(VI) adsorption on FeO/CNTs. Most importantly, possible synthesis mechanism and Cr(VI) removal mechanism were explored. The results suggest that large amounts of Cr(VI) were adsorbed on FeO/CNTs surface by substituting the surface position of -OH and then reducing it to Cr(OH) and CrO.
Показать больше [+] Меньше [-]Removal of copper from water by electrocoagulation process—effect of alternating current (AC) and direct current (DC) Полный текст
2013
Kamaraj, Ramakrishnan | Ganesan, Pandian | Lakshmi, Jothinathan | Vasudevan, Subramanyan
PURPOSE AND AIM: In general, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of copper from water using magnesium alloy as anode and cathode. MATERIALS AND METHODS: Magnesium alloy of size 2.0 dm² was used as anode and as cathode. To optimize the maximum removal efficiency, different parameters like effect of initial concentration, effect of temperature, pH, and effect of current density were studied. Copper adsorbed magnesium hydroxide coagulant was characterized by SEM, EDAX, XRD, and FTIR. RESULTS: The results showed that the optimum removal efficiency of copper is 97.8 and 97.2 % with an energy consumption of 0.634 and 0.996 kWh/m³ at a current density of 0.025 A/dm², pH of 7.0 for AC and DC, respectively. The adsorption of copper is preferably fitting the Langmuir adsorption isotherm for both AC and DC respectively. The adsorption process follows the second-order kinetics model with good correlation. Temperature studies showed that adsorption was endothermic and spontaneous in nature. CONCLUSIONS: The magnesium hydroxide generated in the cell removes the copper present in the water, reducing the copper concentration to less than 1 mg/L, making it safe for drinking. The results of the scale-up study show that the process was technologically feasible.
Показать больше [+] Меньше [-]Potential of ultrafiltration for organic matter removal in the polymer industry effluent based on particle size distribution analysis Полный текст
2013
Doğruel, Serdar | Çokgör, Emine Ubay | Ince, Orhan | Sözen, Seval | Orhon, Derin
The purpose of the study was the experimental evaluation of ultrafiltration as a potential innovative technology for the removal of organic matter of around 15,000 mg chemical oxygen demand (COD) per liter in the polymer industry wastewater. Particle size distribution (PSD) analysis served as the major experimental instrument along with conventional chemical settling. Biodegradation characteristics of the remaining COD after ultrafiltration were determined by model interpretation of the corresponding oxygen uptake rate (OUR) profile. The study first involved a detailed characterization of the polymer wastewater including PSD analysis of the COD content. Chemical treatability was investigated using lime alone and with ferric chloride as coagulants followed with a PSD assessment of the chemically settled effluent. Modeling of the OUR profile generated by the ultrafiltration effluent defined related biodegradation kinetics and provided information on the overall COD removal potential. PSD analysis indicated that more than 70 % of the total COD accumulated in the 220- to 450-nm size range. It indicated that ultrafiltration was potentially capable of removing more than 90 % of the COD with an effluent lower than 1,500 mg COD/L. Chemical settling with 750 mg/L of FeCl₃ dosing at a pH of 7.0 provided a similar performance. The ultrafiltration effluent included mainly hydrolysable COD and proved to be biodegradable, with the process kinetics compatible with domestic sewage. PSD evaluation proved to be a valuable scientific instrument for underlining the merit of ultrafiltration as the appropriate innovative technology for polymer wastewater, removing the major portion of the COD in a way that is suitable for recovery and reuse and producing a totally biodegradable effluent.
Показать больше [+] Меньше [-]Levels, compositions, and inventory of polybrominated diphenyl ethers in sewage sludge of Guangdong Province, South China Полный текст
2013
Ran, Yong | Yang, Juan | Liu, Yejun | Zeng, Xianying | Gui, Hongyan | Zeng, E. Y. (Eddy Y.)
Polybrominated diphenyl ethers (PBDEs) were measured in sewage sludge samples collected from major wastewater treatment plants in Guangdong Province, South China. Concentrations of ∑39PBDE (all 39 compounds including tri- to hepta- PBDE congeners except for BDE-209) ranged from 3.6 to 428 ng/g dw with a mean value of 67.4 ng/g dw and a median value of 25.9 ng/g dw, and those of BDE-209 ranged from 9.9 to 5,010 ng/g dw (mean 1,024 ng/g dw and median 824 ng/g dw). The PBDE mixtures detected were mainly comprised of penta-, octa-, and deca-BDEs, with deca-BDE as the dominant constituent. The most abundant congeners, excluding BDE-209, were BDE-47, BDE-99, and BDE-183. Good correlations were found among the concentrations of BDE-47, BDE-99, BDE-100, BDE-138, and BDE-154 (r > 0.8). However, poor correlations were found between the concentrations of BDE-209 and all other congeners (r < 0.3). This fact suggests that most tri- to hepta-BDEs detected did not originate from decomposition of deca-BDE. The estimated annual emission of ∑allPBDEs, ∑39PBDEs, penta-BDE, octa-BDE, and deca-BDE to the Pearl River Delta environment (PRD), based on the sludge samples analyzed, amounts to 232, 20.2, 5.5, 1.7, and 212 kg per year, implicating sewage sludge as a significant source of PBDEs to the PRD environment.
Показать больше [+] Меньше [-]Adverse birth outcomes in the vicinity of industrial installations in Spain 2004–2008 Полный текст
2013
Castelló, Adela | Río, Isabel | García-Pérez, Javier | Fernández-Navarro, Pablo | Waller, Lance A. | Clennon, Julie A. | Bolúmar, Francisco | López-Abente, Gonzalo
Industrial activity is one of the main sources of ambient pollution in developed countries. However, research analyzing its effect on birth outcomes is inconclusive. We analyzed the association between proximity of mother's municipality of residence to industries from 24 different activity groups and risk of very (VPTB) and moderate (MPTB) preterm birth, very (VLBW) and moderate (MLBW) low birth weight, and small for gestational age (SGA) in Spain, 2004-2008. An ecological study was defined, and a "near vs. far" analysis (3.5 km threshold) was carried out using Hierarchical Bayesian models implemented via Integrated Nested Laplace Approximation. VPTB risk was higher for mothers living near pharmaceutical companies. Proximity to galvanization and hazardous waste management industries increased the risk of MPTB. Risk of VLBW was higher for mothers residing near pharmaceutical and non-hazardous or animal waste management industries. For MLBW many associations were found, being notable the proximity to mining, biocides and animal waste management plants. The strongest association for SGA was found with proximity to management animal waste plants. These results highlight the importance of further research on the relationship between proximity to industrial sites and the occurrence of adverse birth outcomes especially for the case of pharmaceutical and animal waste management activities.
Показать больше [+] Меньше [-]Photodegradation of 4-tert octylphenol in aqueous solution promoted by Fe(III) Полный текст
2013
Wu, Yanlin | Yuan, Haixia | Wei, Guanran | Zhang, Shanduan | Li, Hongjing | Dong, Wenbo
4-Tert-octylphenol (4-t-OP), a kind of endocrine-disrupting compounds, is widely distributed in natural water surroundings but can hardly be biodegraded. The advanced oxidation processes (AOPs) have been proved to be an efficient method to degrade 4-t-OP. In this study, the photodegradation of 4-t-OP in aqueous solution promoted by Fe(III) and the photooxidation mechanism were investigated. The ferric perchlorate was added into the aqueous solution for the production of hydroxyl radical. The efficiency of mineralization was monitored by total organic carbon analyzer, and photooxidation products were determined by high-performance liquid chromatography and liquid chromatography-mass spectrometer. 4-t-OP (2.4 × 10⁻⁵ M) in aqueous solution was completely degraded after 45 min in the presence of Fe(III) (1.2 × 10⁻³ M) under UV irradiation (λ = 365 nm). The optimal pH was 3.5. Higher Fe(III) concentration or lower initial 4-t-OP concentration led to increased photodegradation efficiency of 4-t-OP. The reaction was almost completely inhibited in the presence of 2-propanol. About 70 % mineralization of the solution was obtained after 50 h. The photooxidation product was supposed to be 4-tert-octyl catechol. 4-t-OP in aqueous solution can be degraded in the presence of Fe(III) under the solar irradiation. The photoinduced degradation is due to the reaction with hydroxyl radicals. It shows that the 4-t-OP is mineralized by the inducement of Fe(III) aquacomplexes, which exposes to solar light. Therefore, the results would provide useful information for the potential application of the AOPs to remove 4-t-OP in water surroundings.
Показать больше [+] Меньше [-]Differential Legionella spp. survival between intracellular and extracellular forms in thermal spring environments Полный текст
2013
Kao, Po-Min | Tung, Min-Che | Hsu, Bing-Mu | Hsu, Shih-Yung | Huang, Rende | Liu, Jorn-Hon | Huang, Youli
Legionella are commonly found in natural and man-made aquatic environments and are able to inhabit various species of protozoa. The relationship between the occurrence of Legionella spp. within protozoa and human legionellosis has been demonstrated; however, the proportions of intracellular and extracellular Legionella spp. in the aquatic environment were rarely reported. In this study, we developed a new method to differentiate intracellular and extracellular Legionella spp. in the aquatic environment. Water samples from three thermal spring recreational areas in southeastern Taiwan were collected and analyzed. For each water sample, concurrent measurements were performed for Legionella spp. and their free-living amoebae hosts. The overall detection rate was 32 % (16/50) for intracellular Legionella spp. and 12 % (6/50) for extracellular Legionella spp. The most prevalent host of Legionella spp. was Hartmannella vermiformis. The identified Legionella spp. differed substantially between intracellular and extracellular forms. The results showed that it may be necessary to differentiate intracellular and extracellular forms of Legionella spp.
Показать больше [+] Меньше [-]Dioxin/POPs legacy of pesticide production in Hamburg: Part 1—securing of the production area Полный текст
2013
Weber, Roland | Varbelow, Hans Gerhard
α-Hexachlorocyclohexane (HCH), β-HCH, and γ-HCH (lindane) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention. Therefore, the chemicals need to be globally addressed, including the disposal of historic wastes. At most sites, the approximately 85 % of HCH waste isomers were dumped. At a former lindane factory in Hamburg and some other factories the HCH, waste was recycled producing residues with high polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) levels. The soil and ground water under the former pesticide factory was/is highly contaminated with HCH (260 tons), chlorobenzenes (550 tons), and PCDD/PCDF (6 kg toxic equivalents (TEQ)). This contamination did not result from disposal operations but from spillages and leakages during the 30 years of the factory's production history. A containment wall has been constructed around the production area to prevent the dispersal of the pollutants. The ground water is managed by a pump and treat system. Over the last 15 years, approximately 10–30 tons of this pollution reservoir has been pumped and incinerated. For the contaminated production buildings, specific assessment and demolition technologies have been applied. In addition to their HCH waste isomer deposition, former lindane/HCH productions need to be assessed for possible recycling practice of HCH and related PCDD/PCDF contamination of the production area and buildings. Since such recycling activities have taken place at several factories in different countries, the experience of assessment and management of the described production area and contaminated buildings could be valuable. Such assessment could be addressed within the frame of the Stockholm Convention.
Показать больше [+] Меньше [-]Co-treatment of acid mine drainage with municipal wastewater: performance evaluation Полный текст
2013
Hughes, Theresa A. | Gray, N. F.
Co-treatment of acid mine drainage (AMD) with municipal wastewater (MWW) using the activated sludge process is a novel treatment technology offering potential savings over alternative systems in materials, proprietary chemicals and energy inputs. The impacts of AMD on laboratory-scale activated sludge units (plug-flow and sequencing batch reactors) treating synthetic MWW were investigated. Synthetic AMD containing Al, Cu, Fe, Mn, Pb, Zn and SO4 at a range of concentrations and pH values was formulated to simulate three possible co-treatment processes, i.e., (1) adding raw AMD to the activated sludge aeration tank, (2) pre-treating AMD prior to adding to the aeration tank by mixing with digested sludge and (3) pre-treating AMD by mixing with screened MWW. Continuous AMD loading to the activated sludge reactors during co-treatment did not cause a significant decrease in chemical oxygen demand (COD), 5-day biochemical oxygen demand, or total organic carbon removal; average COD removal rates ranged from 87-93 %. Enhanced phosphate removal was observed in reactors loaded with Fe- and Al-rich AMD, with final effluent TP concentrations <2 mg/L. Removal rates for dissolved Al, Cu, Fe and Pb were 52-84 %, 47-61 %, 74-86 % and 100 %, respectively, in both systems. Manganese and Zn removal were strongly linked to acidity; removal from net-acidic AMD was <10 % for both metals, whereas removal from circum-neutral AMD averaged 93-95 % for Mn and 58-90 % for Zn. Pre-mixing with screened MWW was the best process option in terms of AMD neutralization and metal removal. However, significant MWW alkalinity was consumed, suggesting an alkali supplement may be necessary.
Показать больше [+] Меньше [-]Cadmium effects on the fitness-related traits and antioxidative defense of Lymantria dispar L. larvae Полный текст
2013
Mirčić, Dejan | Blagojević, Duško | Perić-Mataruga, Vesna | Ilijin, Larisa | Mrdaković, Marija | Vlahović, Milena | Lazarević, Jelica
Cadmium, like many other pollutants, is nondegradable and can be accumulated by Lymantria dispar at a level that affects fitness components, physiology, and development, which could indicate presence of environment pollution by heavy metals. The cadmium effect on fitness-related traits in the third, fourth, fifth, and sixth instar of L. dispar L. was determined. Furthermore, activities of the following antioxidative defense components after the larvae had been fed on the artificial cadmium-supplemented diet (50 μg Cd/g dry food) were assessed: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), total glutathione amount (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and the amount of free sulfhydryl (SH) groups. Statistically significant delay of development in the fourth, fifth, and sixth instar and decrease of the larval mass in the third and fourth instar were estimated after the exposure to cadmium through food in comparison to the control. There were no changes in SOD activity of cadmium-treated larvae. Significantly lower CAT, APOX, and GR activities were recorded in the third, fifth, and in the third instar, respectively. At the same time, higher activity was recorded in the sixth instar, while GST activity was higher in the third. GSH content was significantly lower during all instars after treatment but the amount of SH groups was higher in older larvae. The strategy of antioxidative defense and the adjustment or modulation of fitness-related traits in presence of cadmium was dependent on the age of larvae in L. dispar, which might be used in early metal risk assessment in Lepidoptera and other insects.
Показать больше [+] Меньше [-]