Уточнить поиск
Результаты 1571-1580 из 7,990
On modelling growing menace of household emissions under COVID-19 in Indian metros
2021
Beig, Gufran | Korhale, Nikhil | Rathod, Aditi | Maji, Sujit | Sahu, Saroj K. | Dole, Shruti | Latha, R. | Murthy, B.S.
While local anthropogenic emission sources contribute largely to deteriorate metro air quality, long range transport can also play a significant role in influencing levels of pollutants, particularly carbon monoxide (CO) that has a relatively long life span. A nationwide lockdown of two months imposed across India amid COVID-19 led to a dramatic decline in major sources of emissions except for household, mainly from cooking. This initially led to declined levels of CO in two of the largest megacities of India, Delhi and Mumbai under stable weather conditions, followed by a distinctly different variability under the influence of prevailing mesoscale circulation. We hereby trace the sources of CO from local emissions to transport pathways and interpret the observed variability in CO using the interactive WRF-Chem model and back trajectory analysis. For this purpose, COVID-19 emission inventory of CO has been estimated. Model results indicate a significant contribution from externally generated CO in Delhi from surrounding regions and an unusual peak on 17th May amid lockdown due to long range transport from the source region of biofuel emissions in central India. However, the oceanic winds played a larger role in keeping CO levels in check in a coastal megacity Mumbai which otherwise has high CO emissions from household sources due to a larger share of urban slums. Keeping track of evolving carbon-intensive pathways can help inform government responses to the COVID-19 pandemic to prioritize controls of emissions sources.
Показать больше [+] Меньше [-]Multicompartment and cross-species monitoring of contaminants of emerging concern in an estuarine habitat
2021
Miller, Thomas H. | Ng, Keng Tiong | Lamphiere, Aaron | Cameron, Tom C. | Bury, Nicolas R. | Barron, Leon P.
The fate of many chemicals in the environment, particularly contaminants of emerging concern (CEC), have been characterised to a limited extent with a major focus on occurrence in water. This study presents the characterisation, distribution and fate of multiple chemicals including pharmaceuticals, recreational drugs and pesticides in surface water, sediment and fauna representing different food web endpoints in a typical UK estuary (River Colne, Essex, UK). A comparison of contaminant occurrence across different benthic macroinvertebrates was made at three sites and included two amphipods (Gammarus pulex &Crangon crangon), a polychaete worm (Hediste diversicolor) and a gastropod (Peringia ulvae). Overall, multiple contaminants were determined in all compartments and ranged from; <LOQ – 386 ng L⁻¹ in surface water (n = 59 compounds), <LOQ – 146 ng g⁻¹ in sediment (n = 39 compounds) and <LOQ – 91 ng g⁻¹ biota (n = 33 compounds). H. diversicolor and P. ulvae (sediment dwellers) showed greater chemical body burden compared with the two swimming amphipod species sampled (up to 2.5 - 4-fold). The most frequently determined compounds in biota (100%, n = 36 samples) included; cocaine, benzyoylecgonine, carbamazepine, sertraline and diuron. Whilst some of the highest concentrations found were in species H. diverscolor and P. ulvae for psychoactive pharmaceuticals including citalopram (91 ng g⁻¹), sertraline (69 ng g⁻¹), haloperidol (66 ng g⁻¹) and the neonicotinoid, imidacloprid (33 ng g⁻¹) Sediment was noted as an important exposure route for these benthic dwelling organisms and will be critical to monitor in future studies. Overall, the analysis of multiple species and compartments demonstrates the importance of including a range of exposure pathways in order to appropriately assess chemical fates and associated risks in the aquatic environment.
Показать больше [+] Меньше [-]Zebrafish and water microbiome recovery after oxytetracycline exposure
2021
Almeida, Ana Rita | Domingues, Inês | Henriques, Isabel
Oxytetracycline (OTC) is a broad-spectrum antibiotic widely used in aquaculture, resulting in contamination of aquatic environments. In a previous study, we observed significant effects of OTC sublethal concentrations in zebrafish, its microbiome and the water bacterial community. Here we assessed the extent to which these effects are reversible after a recovery period. Zebrafish adults were exposed to OTC (10,000 μg/L) via water exposure. Effects were analyzed at 5 days (5 dE) and 2 months (2 mE) of exposure and recovery was assessed at 5 days (5dPE) and 1 month (1mPE) after exposure Impacts were observed in fish energetic reserves and in fish and water microbiomes structure, being significant even at 5 dE. At energetic reserves level, the effect in cellular energy allocation (CEA) was dependent on the exposure time: initially CEA increased while after 2 mE CEA decreased. At microbiome level, diversity was not affected but the richness of the water microbiome significantly decreased at 2 mE.Regarding the post-exposure period, at CEA level, organisms seem to recover. In water and gut microbiomes OTC effects were also attenuated after exposure ceases, indicating a recovery. Even so, the structure of water exposed community remained significantly different towards the control, while richness of this community significantly increased at 1mPE. During exposure the relative abundance of 11 and 16 genera was significantly affected in the gut and water microbiomes, respectively, though these numbers decreased to 4 and 8 genera in the post-exposure period. At functional level during exposure 12 and 13 pathways were predicted to be affected in zebrafish gut and water microbiomes respectively, while post-exposure few pathways remained significantly affected. Hence, our results suggest a recovery of the fish fitness as well as of the water and intestine microbiomes after exposure ceases. Even so, some of the effects caused by OTC remain significant after this recovery period.
Показать больше [+] Меньше [-]Halogenated flame retardants in wild, prey-sized mud carp from an e-waste recycling site in South China, 2006–2016: Residue dynamics and ecological risk assessment
2021
Wu, Jiang-Ping | Feng, Wen-Lu | Tao, Lin | Li, Xiao | Nie, You-Tian | Xu, Ya-Chun | Zeng, Yan-Hong | Luo, Xiao-Jun | Mai, Bi-Xian
The crude e-waste recycling has been regulated in China since the late 2000s; however, information on the recent levels and the ecological risks of e-waste derived contaminants such as halogenated flame retardants (HFRs) in the e-waste sites are limited. We therefore examined the concentrations of several HFRs in wild, prey-sized mud carps collected from a typical e-waste site in 2006, 2011 and 2016, to understand the exposure dynamics and ecological risk of these chemicals. Several ecological and biological parameters including δ¹⁵N, δ¹³C, body size and lipid content of the fish were also examined, to ensure an overall uniformity of the sample set among the sampling years. Among the HFRs measured, polybrominated diphenyl ethers (PBDEs) were detected at the highest concentrations (contributing >90% to ∑HFRs), followed by Dechlorane Plus (DPs), polybrominated biphenyls (PBBs), and alternative brominated flame retardants (ABFRs). The fish concentrations of ∑PBDEs, ∑PBBs and ∑DPs significantly dropped by 65%, 57% and 53% from 2006 to 2011, and 12%, 74% and 51% from 2011 to 2016, respectively; likely reflecting the positive impact of the environmental regulations on crude e-waste recycling. The ∑ABFRs concentrations were also decreased by 80% from 2006 to 2011, but increased by 127% from 2011 to 2016; suggesting possible fresh input of these novel HFRs in recent years. In addition to the changes in the HFR concentrations, contaminant profiles in the fish were also changed, possibly due to environmental degradation of the HFRs. Despite our conservative method of risk assessment, we found that PBDEs posed an important risk both for the mud carp and for piscivorous wildlife that inhabit the e-waste site.
Показать больше [+] Меньше [-]Influence of sulfur amendments on heavy metals phytoextraction from agricultural contaminated soils: A meta-analysis
2021
Zakari, Sissou | Jiang, Xiaojin | Zhu, Xiai | Liu, Wenjie | Allakonon, M. Gloriose B. | Singh, Ashutosh Kumar | Chen, Chunfeng | Zou, Xin | Akponikpè, P.B Irénikatché | Dossa, Gbadamassi G.O. | Yang, Bin
Heavy metal pollution is becoming recurrent and threatens biota biosafety in many agricultural fields. Diverse solutions explore the application of amendments to enable remediation. Sulfur represents a nonmetallic chemical element that actively affects heavy metals phytoextraction, and promotes and alternatively mitigates soil functions. In this study, we conduct a meta-analysis to synthesize the current knowledge on the influence of sulfur amendments on plants heavy metals uptake from contaminated soil media. Random-effects model was used to summarize effect sizes from 524 data points extracted from 30 peer reviewed studies. The phytoextraction of cadmium, chromium and nickel were 1.6-, 3.3-, and 12.6-fold, respectively, higher when sulfur amendment was applied; while copper uptake was 0.3-fold lower. Irrespective of the sulfur type, heavy metal extraction increased with the raising sulfur stress. Individual organs showed significant differences of heavy metal uptake between sulfur applied and non-sulfur treatments, and combined organs did not. The heavy metals uptake in leaves and roots were higher in sulfur applied than non-sulfur applied treatments, while those in grain, husk, and stalks were lower. The heavy metals phytoextraction (response ratio) followed the order roots > leaves > stalk > grain > husk. Moreover, heavy metals uptake was 2-fold higher in the sulfur applied than the non-sulfur treatments under ideal (5.5–8) and alkaline conditions (8–14), and 0.2-fold lower under acidic pH (1–5.5). Cadmium, manganese and nickel, and chromium were the most extracted under sulfur application by Vicia sp., Sorghum sp. and Brassica sp., respectively; while chromium, manganese, and iron were the most uptake without sulfur amendments by Oryza sp., Zea sp. and Sorghum sp., respectively. Our study highlights that the influence of sulfur on heavy metal phytoextraction depends on the single or combined effects of sulfur stress intensity, sulfur compounds, plant organ, plant type, and soil pH condition.
Показать больше [+] Меньше [-]Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk
2021
Fry, K.L. | Gillings, M.M. | Isley, C.F. | Gunkel-Grillon, P. | Taylor, Mark Patrick
Metallurgical industries remain a considerable source of trace element contamination and potential human health risk. Determination of sources is a key challenge. With respect to the South Pacific's largest and longest operating metallurgic smelter in Nouméa, New Caledonia, determining the environmental impact and subsequent human health risk associated with local ferronickel smelting is complicated by natural geological enrichment of Ni and Cr. This study applies a multi-method and multi-matrix approach to disentangle smelter emissions from geogenic sources and model the consequent health risk from industrial activity. Dust wipes (n = 108), roadside soil (n = 91), garden soil (n = 15) and household vacuum dust (n = 39) were assessed to explore geospatial trace element (As, Cr, Cu, Fe, Mn, Ni, Pb, S, V and Zn) variations across outdoor and indoor environments. Enrichment factors (EF) identified elevated levels of smelter-related trace elements: S (EF = 7), Ni (EF = 6) and Cr (EF = 4), as well as Zn (EF = 4). Smelter-related elements in soil and dust deposits were negatively correlated with distance from the facility. Similarity of Pb isotopic compositions between dust wipes, surface soil and vacuum dust indicated that potentially toxic trace elements are being tracked into homes. Non-carcinogenic health risk modelling (Hazard Index, HI) based on 15 spatial nodes across Nouméa revealed widespread exceedance of tolerable risk for children (0–2 years) for Ni (HI 1.3–15.8) and Mn (HI 0.6–1.8). Risk was greatest near the smelter and to the north-west, in the direction of prevailing wind. Given the elevated cancer risk documented in New Caledonia, disentanglement of environmental from industrial sources warrants further attention to ensure community health protection. Our analysis illustrates how the confounding effects from complex environmental factors can be distilled to improve the accuracy of point source apportionment to direct future mitigation strategies.
Показать больше [+] Меньше [-]Impact of manure compost amendments on NH3 volatilization in rice paddy ecosystems during cultivation
2021
Lee, Juhee | Choi, Seongwoo | Lee, Yeomyeong | Kim, Sang Yoon
Livestock manure has been widely used in agriculture to improve soil productivity and quality. However, intensive application can significantly enhance soil nitrogen (N) availability and facilitate ammonia (NH₃) volatilization during rice cultivation. The effects of different rates of manure application on the NH₃ volatilization rate, its mechanism, and their relationships have not been comprehensively investigated. In this study, field trials were conducted to investigate NH₃ volatilization in rice paddy soils amended with different livestock manure, cattle manure (CM), and swine manure (SM), at a rate of 0 (NPK), 10, 20, and 40 Mg ha⁻¹ during cultivation. Moreover, the soil physicochemical and biological properties and rice N uptake were investigated. Ultra-fine particulate matter (PM₂.₅) was measured quantitatively and qualitatively. Manure application significantly increased NH₃ emissions compared to the control. Much higher volatilization rates were observed in the SM soils than in the CM soils, even when the same amount of N was applied. This is mainly related to the higher labile NH₄⁺ concentration and urease activity in SM soils. With increasing application levels, NH₃ emission rates proportionally increased in the SM, but there was no significant difference in the CM. Livestock manure application significantly increased NH₃ volatilization, particularly during the initial manure application and additional fertilization stages during rice cultivation. The results showed that the application of livestock manure significantly increased NH₃ volatilization. Moreover, the biochemical properties of manure composts, including labile N and urease activity, mainly affected NH₃ dynamics in rice paddies during cultivation rather than their type. Irrespective of manure application, PM₂.₅, did not show a significant difference at the initial stage of cultivation. NH₃ volatilization was not significantly correlated with the formation of PM₂.₅. It is necessary to develop effective strategies for mitigating NH₃ volatilization and maintaining soil quality without decreasing rice productivity in paddy ecosystems.
Показать больше [+] Меньше [-]Impacts of antibiotics on biofilm bacterial community and disinfection performance on simulated drinking water supply pipe wall
2021
Zhang, Yongji | Zhang, Yingyu | Liu, Lina | Zhou, Lingling | Zhao, Zhiling
Overuse of antibiotics is accelerating the spread of resistance risk in the environment. In drinking water supply systems, the effect of antibiotics on the resistance of biofilm is unclear, and there have been few studies in disinfectant-containing systems. Here, we designed a series of drinking water supply reactors to investigate the effects of antibiotics on biofilm and bacteria in the water. At low concentrations, antibiotics could promote the growth of bacteria in biofilm; among the tested antibiotics (tetracycline, sulfadiazine and chloramphenicol), tetracycline had the strongest ability to promote this. And the antibiotic resistant bacteria (ARB) could inhibit the growth of bacteria in drinking water. Results have shown that antibiotics enhanced the bacterial chlorine resistance in the effluent, but reduced that in the biofilm. Furthermore, metagenomic analysis showed that antibiotics reduced the richness of biofilm communities. The dominant phyla in the biofilm were Proteobacteria, Planctomycetes, and Firmicutes. In tetracycline-treated biofilm, the dominant phylum was Planctomycetes. In sulfadiazine- and chloramphenicol-treated groups, bacteria with complex cell structures preferentially accumulated. The dominant class in biofilm in the ARB-added group was Gammaproteobacteria. The abundance of antibiotic resistant genes (ARGs) was correlated with biofilm community structure. This study shows that antibiotics make the biofilm community structure of drinking water more resistant to chlorine. ARGs may be selective for certain bacteria in the process, and there may ultimately be enhanced chlorine and antibiotic resistance of effluent bacteria in drinking water.
Показать больше [+] Меньше [-]Prenatal exposure to criteria air pollutants and associations with congenital anomalies: A Lebanese national study
2021
Al Noaimi, Ghaliya | Yunis, Khalid | El Asmar, Khalil | Abu Salem, Fatima K. | Afif, Charbel | Ghandour, Lilian A. | Hamandi, Ahmad | Dhaini, Hassan R.
Maternal exposure to air pollution has been associated with a higher birth defect (BD) risk. Previous studies suffer from inaccurate exposure assessment methods, confounding individual-level variations, and classical analytical modelling. This study aimed to examine the association between maternal exposure to criteria air pollutants and BD risk. A total of 553 cases and 10,214 controls were identified from private and public databases. Two subgroups were then formed: one for a matched case-control design, and another for Feature Selection (FS) analysis. Exposure assessment was based on the mean air pollutant-specific levels in the mother’s residential area during the specific BD gestational time window of risk (GTWR) and other time intervals. Multivariate regression models outcomes consistently showed a significant protective effect for folic acid intake and highlighted parental consanguinity as a strong BD risk factor. After adjusting for these putative risk factors and other covariates, results show that maternal exposure to PM₂.₅ during the first trimester is significantly associated with a higher overall BD risk (OR:1.05, 95%CI:1.01–1.09), and with a higher risk of genitourinary defects (GUD) (OR:1.06, 95%CI:1.01–1.11) and neural tube defects (NTD) (OR:1.10, 95%CI:1.03–1.17) during specific GTWRs. Maternal exposure to NO₂ during GTWR exhibited a significant protective effect for NTD (OR:0.94, 95%CI:0.90–0.99), while all other examined associations were not statistically significant. Additionally, maternal exposure to SO₂ during GTWR showed a significant association with a higher GUD risk (OR:1.17, 95%CI:1.08–1.26). When limiting selection to designated monitor coverage radiuses, PM₂.₅ maintained significance with BD risk and showed a significant gene-environment interaction for GUD (p = 0.018), while NO₂ protective effect expanded to other subtypes. On the other hand, FS analysis confirmed maternal exposure to PM₂.₅ and NO₂ as important features for GUD, CHD, and NTD. Our findings, set the basis for building a novel BD risk prediction model.
Показать больше [+] Меньше [-]Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China
2021
Zheng, Pai | Chen, Zhangjian | Liu, Yonghong | Song, Hongbin | Wu, Chieh-Hsi | Li, Bingying | Kraemer, Moritz U.G. | Tian, Huaiyu | Yan, Xing | Zheng, Yuxin | Stenseth, Nils Chr | Jia, Guang
People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. However, the association between long-term exposure to air pollutants, which increases cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We collected data of confirmed COVID-19 cases during the first wave of the epidemic in mainland China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as the outcome, and long-term average air pollutant levels as the exposure. Our analysis was adjusted using several variables, including a mobile phone dataset, covering human movement from Wuhan before the travel ban and movements within each city during the period of the emergency response. Other variables included smoking prevalence, climate data, socioeconomic data, education level, and number of hospital beds for 324 cities in China. After adjusting for human mobility and socioeconomic factors, we found an increase of 37.8% (95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and 14.2% (7.9%–20.5%) in the number of COVID-19 cases for every 10-μg/m³ increase in long-term exposure to NO₂, PM₂.₅, and PM₁₀, respectively. However, when stratifying the data according to population size, the association became non-significant. The present results are derived from a large, newly compiled and geocoded repository of population and epidemiological data relevant to COVID-19. The findings suggested that air pollution may be related to population vulnerability to COVID-19 infection, although the extent to which this relationship is confounded by city population density needs further exploration.
Показать больше [+] Меньше [-]