Уточнить поиск
Результаты 1601-1610 из 7,990
Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice
2021
Li, Dapeng | Jiang, Lilong | Hong, Yanjun | Cai, Zongwei
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
Показать больше [+] Меньше [-]Achievements in pyrolysis process in E-waste management sector
2021
Joo, Junghee | Kwon, Eilhann E. | Lee, Jechan
Many aspects of modern life of our civilization are associated with using electrical and electronic devices (EEE). Ever-increasing demand for high-performance EEE and accelerated technological development make the replacement of EEE become frequent. This leads to the generation of a tremendous amount of electronic waste (E-waste). Challenges of the management of E-waste have recently arisen out of a dearth of proper technologies to treat E-waste. Pyrolysis process can thermochemically treat waste materials that have a complicated nature and inhomogeneity. This article gives a systematic review as an effort to tackle the challenges in the context of achievements in pyrolysis process in E-waste management sector. Pyrolysis mechanism and types of pyrolysis processes and pyrolysis reactors are first discussed. Various pyrolysis technologies applied to the E-waste treatment are then summarized and compared to each other. Points to be considered for further research and pending challenges of E-waste pyrolysis are also discussed. The pyrolysis treatment of E-waste is not yet fully industrialized mostly because of high costs. However, there should be much room for further developing the E-waste pyrolysis; hence, its industrialization and commercialization is just a matter of time.
Показать больше [+] Меньше [-]Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism
2021
Wang, Xingang | Han, Ting | Sun, Yang | Geng, Hongya | Li, Bing | Dai, Hongliang
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO₂, CuO, CeO₂, MgO, and MnO₂ in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
Показать больше [+] Меньше [-]Profiles of environmental antibiotic resistomes in the urban aquatic recipients of Sweden using high-throughput quantitative PCR analysis
2021
Lai, Foon Yin | Muziasari, Windi | Virta, Marko | Wiberg, Karin | Ahrens, Lutz
Antibiotic resistance in aquatic ecosystems presents an environmental health issue worldwide. Urban recipient water quality is susceptible to effluent discharges with antibiotic resistance contaminants and needs to be protected, particularly for those as sources of drinking water production. Knowledge on aquatic resistome profiles in downstream of wastewater treatment plants allows a better understanding of the extent to which antibiotic resistance contaminants emerge and spread in recipient waters, but such information remains very limited in Sweden. The key objective of this study was to determine the resistome profiles of numerous antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and other genes in urban recipient water systems connected to Sweden's major drinking water reservoir. This was achieved through analysis of surface water samples for 296 genes using high-throughput quantitative PCR arrays. A total of 167 genes were detected in at least one of the samples, including 150 ARGs conferring resistance to 11 classes of antibiotics, 7 integrase MGEs and 9 other genes. There was a spatial difference in the resistome profiles with the greatest average relative abundance of resistance genes observed in the water body of Västerås followed by Uppsala, Stockholm and Eskilstuna, as similar to the general pattern of the antibiotic sales for these regions. ARGs against β-lactams and sulfonamides showed the highest average relative abundance in the studied water bodies, while vancomycin resistance genes were only found in the Uppsala water environment. Generally, the recipient water bodies were detected with higher numbers of genes and greater relative abundances as compared to the upstream sites. Anthropogenic pollution, i.e., wastewater discharge, in the recipient water was also reflected by the finding of intI, sul1 and crAssphage. Overall, this study provided the first quantitative assessment of aquatic environmental resistomes in Sweden, highlighting the widespread of antibiotic resistance contaminants in urban recipient waters.
Показать больше [+] Меньше [-]Enrichment of potential pathogens in marine microbiomes with different degrees of anthropogenic activity
2021
Jurelevicius, Diogo | Cotta, Simone R. | Montezzi, Lara F. | Dias, Armando C.F. | Mason, Olivia U. | Picão, Renata C. | Jansson, Janet K. | Seldin, Lucy
Anthropogenic activities in coastal marine ecosystems can lead to an increase in the abundance of potentially harmful microorganisms in the marine environment. To understand anthropogenic impacts on the marine microbiome, we first used publicly available microbial phylogenetic and functional data to establish a dataset of bacterial genera potentially related to pathogens that cause diseases (BGPRD) in marine organisms. Representatives of low-, medium- and highly impacted marine coastal environments were selected, and the abundance and composition of their microbial communities were determined by quantitative PCR and 16 S rRNA gene sequencing. In total, 72 BGPRD were cataloged, and 11, 36 and 37 BGPRD were found in low-, medium- and highly human-impacted ecosystems, respectively. The absolute abundance of BGPRD and the co-occurrence of antibiotic resistance genes (AGR) increased with the degree of anthropogenic perturbation in these ecosystems. Anthropogenically impacted coastal microbiomes were compositionally and functionally distinct from those of less impacted sites, presenting features that may contribute to adverse outcomes for marine macrobiota in the Anthropocene era.
Показать больше [+] Меньше [-]A comparative study of EOF and NMF analysis on downward trend of AOD over China from 2011 to 2019
2021
Ma, Qiao | Zhang, Qianqian | Wang, Qingsong | Yuan, Xueliang | Yuan, Renxiao | Luo, Congwei
In recent decades China has experienced high-level PM₂.₅ pollution and then visible air quality improvement. To understand the air quality change from the perspective of aerosol optical depth (AOD), we adopted two statistical methods of Empirical Orthogonal Functions (EOF) and Non-negative Matrix Factorization (NMF) to AOD retrieved by MODIS over China and surrounding areas. Results showed that EOF and NMF identified the important factors influencing AOD over China from different angles: natural dusts controlled the seasonal variation with contribution of 42.4%, and anthropogenic emissions have larger contribution to AOD magnitude. To better observe the interannual variation of different sources, we removed seasonal cycles from original data and conducted EOF analysis on AOD monthly anomalies. Results showed that aerosols from anthropogenic sources had the greatest contribution (27%) to AOD anomaly variation and took an obvious downward trend, and natural dust was the second largest contributor with contribution of 17%. In the areas surrounding China, the eastward aerosol transport due to prevailing westerlies in spring significantly influenced the AOD variation over West Pacific with the largest contribution of 21%, whereas the aerosol transport from BTH region in winter had relative greater impact on the AOD magnitude. After removing seasonal cycles, biomass burning in South Asia became the most important influencing factor on AOD anomalies with contribution of 10%, as its interannual variability was largely affected by El Niño. Aerosol transport from BTH was the second largest contributor with contribution of 8% and showed a decreasing trend. This study showed that the downward trend of AOD over China since 2011 was dominated by aerosols from anthropogenic sources, which in a way confirmed the effectiveness of air pollution control policies.
Показать больше [+] Меньше [-]Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals
2021
Dorokhov, V.V. | Kuznetsov, G.V. | Nyashina, G.S. | Strizhak, P.A.
This paper presents the results of experimental research into the component composition of gases and ash residue from the combustion of a set of high-potential coal-water slurries containing petrochemicals. We have established that the use of slurry fuels provides a decrease in the CO₂, CH₄, SO₂, and NOₓ concentrations as compared to those from coal combustion. The content of carbon monoxide and hydrogen in the gas environment from the combustion of slurries is higher due to the intense water evaporation. It is shown that adding biomass allows a further 5–33% reduction in the emissions of nitrogen and sulfur oxides as compared to the coal-water slurry and the composition with added waste turbine oil and a 23–68% decrease as compared to coal (per unit mass of the fuel burnt). The mechanisms and stages of CO₂, SO₂, and NOₓ formation are explained with a view to controlling gaseous anthropogenic emissions and ash buildup. The values of the relative environmental performance indicator are calculated for slurry fuels. It is shown to exceed the same indicator of bituminous coal by 28–56%.
Показать больше [+] Меньше [-]Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice
2021
Ran, Zihan | An, Yanpeng | Zhou, Ji | Yang, Jingmin | Zhang, Youyi | Yang, Jingcheng | Wang, Lei | Li, Xin | Lu, Daru | Zhong, Jiang | Song, Huaidong | Qin, Xingjun | Li, Rui
Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.
Показать больше [+] Меньше [-]Implication of nitric oxide and hydrogen sulfide signalling in alleviating arsenate stress in rice seedlings
2021
Mishra, Vipul | Singh, Vijay Pratap
Nitric oxide (NO) and hydrogen sulfide (H₂S) since their discovery have proven to be game changing molecules in alleviating abiotic stress. They individually play role in plant stress management while the pathways of stress regulation through their crosstalk remain elusive. The current study focuses on investigating the interplay of NO and H₂S signalling in the amelioration of arsenate As(V) toxicity in rice seedlings and managing its growth, photosynthesis, sucrose and proline metabolism. Results show that As(V) exposure declined fresh weight (biomass) due to induced cell death in root tips. Moreover, a diminished RuBisCO activity, decline in starch content with high proline dehydrogenase activity and increased total soluble sugars content was observed which further intensified in the presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME, an inhibitor of nitric oxide synthase-like activity), and DL-propargylglycine (PAG, an inhibitor of cysteine desulfhydrase activity). These results correlate with lower endogenous level of NO and H₂S. Addition of L-NAME increased As(V) toxicity. Interestingly, addition of SNP reverses effect of L-NAME suggesting that endogenous NO has a role in mitigating As(V) toxicity. Similarly, exogenous H₂S also significantly alleviated As(V) stress, while PAG further stimulated As(V) toxicity. Furthermore, application of H₂S in the presence of L – NAME and NO in the presence of PAG could still mitigate As(V) toxicity, suggesting that endogenous NO and H₂S could independently mitigate As(V) stress.
Показать больше [+] Меньше [-]New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals
2021
Yan, Xing | Zang, Zhou | Liang, Zhen | Luo, Nana | Ren, Rongmin | Cribb, Maureen | Li, Zhanqing
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Показать больше [+] Меньше [-]