Уточнить поиск
Результаты 1611-1620 из 7,921
The role of available phosphorous in vanadate decontamination by soil indigenous microbial consortia
2021
Zhang, Han | Zhang, Baogang | Gao, Yueqi | Wang, Yu | Lü, Jianping | Chen, Junlin | Chen, Dandan | Deng, Qingling
Indigenous microbial consortia are closely associated with soil inherent components including nutrients and minerals. Although indigenous microbial consortia present great prospects for bioremediation of vanadate [V(V)] contaminated soil, influences of some key components, such as available phosphorus (AP), on V(V) biodetoxification are poorly understood. In this study, surface soils sampled from five representative vanadium smelter sites were employed as inocula without pretreatment. V(V) removal efficiency ranged from 81.7 ± 1.4% to 99.5 ± 0.2% in batch experiment, and the maximum V(V) removal rates were positively correlated with AP contents. Long-term V(V) removal was achieved under fluctuant hydrodynamic and hydrochemical conditions in column experiment. Geobacter and Bacillus, which were found in both original soils and bioreactors, catalytically reduced V(V) to insoluble tetravalent vanadium. Phosphate-solubilizing bacterium affiliated to Gemmatimonadaceae were also identified abundantly. Microbial functional characterization indicated the enrichment of phosphate ABC transporter, which could accelerate V(V) transfer into intercellular space for efficient reduction due to the structural similarity of V(V) and phosphate. This study reveals the critical role of AP in microbial V(V) decontamination and provides promising strategy for in situ bioremediation of V(V) polluted soil.
Показать больше [+] Меньше [-]Microbiome analysis and predicted relative metabolomic turnover suggest bacterial heme and selenium metabolism are altered in the gastrointestinal system of zebrafish (Danio rerio) exposed to the organochlorine dieldrin
2021
Hua, Qing | Adamovsky, Ondrej | Vespalcova, Hana | Boyda, Jonna | Schmidt, Jordan T. | Kozuch, Marianne | Craft, Serena L.M. | Ginn, Pamela E. | Smatana, Stanislav | Budinska, Eva | Persico, Maria | Bisesi, Joseph H. | Martyniuk, Christopher J.
Dietary exposure to chemicals alters the diversity of microbiome communities and can lead to pathophysiological changes in the gastrointestinal system. The organochlorine pesticide dieldrin is a persistent environmental contaminant that bioaccumulates in fatty tissue of aquatic organisms. The objectives of this study were to determine whether environmentally-relevant doses of dieldrin altered gastrointestinal morphology and the microbiome of zebrafish. Adult zebrafish at ∼4 months of age were fed a measured amount of feed containing either a solvent control or one of two doses of dieldrin (measured at 16, and 163.5 ng/g dry weight) for 4 months. Dieldrin body burden levels in zebrafish after four-month exposure were 0 (control), 11.47 ± 1.13 ng/g (low dose) and 18.32 ± 1.32 ng/g (high dose) wet weight [mean ± std]. Extensive histopathology at the whole organism level revealed that dieldrin exposure did not induce notable tissue pathology, including the gastrointestinal tract. A repeated measure mixed model analysis revealed that, while fish gained weight over time, there were no dieldrin-specific effects on body weight. Fecal content was collected from the gastrointestinal tract of males and 16S rRNA gene sequencing conducted. Dieldrin at a measured feed dose of 16 ng/g reduced the abundance of Firmicutes, a phylum involved in energy resorption. At the level of class, there was a decrease in abundance of Clostridia and Betaproteobacteria, and an increase in Verrucomicrobiae species. We used a computational approach called predicted relative metabolomic turnover (PRMT) to predict how a shift in microbial community composition affects exchange of metabolites. Dieldrin was predicted to affect metabolic turnover of uroporphyrinogen I and coproporphyrinogen I [enzyme]−cysteine, hydrogen selenide, selenite, and methyl-selenic acid in the fish gastrointestinal system. These pathways are related to bacterial heme biosynthesis and selenium metabolism. Our study demonstrates that dietary exposures to dieldrin can alter microbiota composition over 4 months, however the long-term consequences of such impacts are not well understood.
Показать больше [+] Меньше [-]Ozonation catalysed by ferrosilicon for the degradation of ibuprofen in water
2021
Huang, Yuanxing | Liang, Manli | Ma, Luming | Wang, Yaowei | Zhang, Daofang | Li, Liang
The search for optimal catalysts to improve the working efficiency of ozonation has always been an important issue in the research field of advanced oxidation processes. In this study, a novel catalyst, ferrosilicon, was selected as the catalyst in heterogeneous catalytic ozonation to degrade ibuprofen (IBP) in water and treat real pharmaceutical wastewater. During the procedure, 45#ferrosilicon exhibited the best catalytic activity. Under the optimized experimental conditions, the IBP removal reached 75%, which was a great improvement compared to the 37% removal by ozone alone. The 45#-ferrosilicon-catalysed ozonation also achieved 68% TOC removal for real pharmaceutical wastewater, which was 31% higher than that by ozone alone. The degradation pathway of IBP was proposed using GC/MS. The EPR test proved that the main active species in the system were free active radicals •OH, and the measured accumulative •OH amount was 102 μmol. The characterization results show that the nascent metallic oxides, hydroxides, and hydroxyoxides on the ferrosilicon surface facilitated the decomposition of ozone molecules and generation of free active radicals. The removal of target organic contaminants in the water was mainly attributed to the oxidization of these highly active species.
Показать больше [+] Меньше [-]Biochar-induced reduction of N2O emission from East Asian soils under aerobic conditions: Review and data analysis
2021
Lee, Sun-Il | Park, Hyun-Jin | Jeong, Young-Jae | Seo, Bo-Seong | Kwak, Jin-Hyeob | Yang, Hye In | Xu, Xingkai | Tang, Shuirong | Cheng, Weiguo | Im, Sang-sŏn | Choi, Woo-Jung
Global meta-analyses showed that biochar application can reduce N₂O emission. However, no relevant review study is available for East Asian countries which are responsible for 70% of gaseous N losses from croplands globally. This review analyzed data of the biochar-induced N₂O mitigation affected by experimental conditions, including experimental types, biochar types and application rates, soil properties, and chemical forms and application rates of N fertilizer for East Asian countries. The magnitude of biochar-induced N₂O mitigation was evaluated by calculating N₂O reduction index (Rᵢₙdₑₓ, percentage reduction of N₂O by biochar relative to control). The Rᵢₙdₑₓ was further standardized against biochar application rate by calculating Rᵢₙdₑₓ per unit of biochar application rate (ton ha⁻¹) (Unit Rᵢₙdₑₓ). The Rᵢₙdₑₓ averaged across different experimental types (n = 196) was −21.1 ± 2.4%. Incubation and pot experiments showed greater Rᵢₙdₑₓ than column and field experiments due to higher biochar application rate and shorter experiment duration. Feedstock type and pyrolysis temperature also affected Rᵢₙdₑₓ; either bamboo feedstock or pyrolysis at > 400 °C resulted in a greater Rᵢₙdₑₓ. The magnitude of Rᵢₙdₑₓ also increased with increasing biochar rate. Soil properties did not affect Rᵢₙdₑₓ when evaluated across all experimental types, but there was an indication that biochar decreased N₂O emission more at a lower soil moisture level in field experiments. The magnitude of Rᵢₙdₑₓ increased with increasing N fertilizer rate up to 500–600 kg N ha⁻¹, but it decreased thereafter. The Unit Rᵢₙdₑₓ averaged across experimental types was −1.2 ± 0.9%, and it was rarely affected by experimental type and conditions but diminished with increasing biochar rate. Our results highlight that since N₂O mitigation by biochar is affected by biochar application rate, Rᵢₙdₑₓ needs to be carefully evaluated by standardizing against biochar application rate to suggest the best conditions for biochar usage in East Asia.
Показать больше [+] Меньше [-]Fate of antibiotic resistance genes in industrial-scale rapid composting of pharmaceutical fermentation residue: The role implications of microbial community structure and mobile genetic elements
2021
Tang, Zhurui | Huang, Caihong | Tian, Yu | Xi, Beidou | Guo, Wei | Tan, Wenbing
Composting is an effective technology to recycle organic solid waste as a green resource. However, pharmaceutical fermentation residue (PFR) contains a variety of pollutants, such as residual drug and antibiotic resistance genes (ARGs), which limits the green cycle of using PFR as a resource. To promote the green recycling of PFR, this study evaluated the characteristics of abundance and the response relationship of ARGs during the process of rapid composting. Different rapid composting samples were collected, and DNA was extracted from each sample. The absolute abundance of ARGs was quantified using quantitative PCR, and the microbial community structure was identified using high-throughput sequencing. The results showed that ermB, ermF, tetM and tetQ were reduced by 89.55%, 15.10%, 89.55%, and 82.30% respectively, and only sul2 increased by approximately 5-fold. Mobile genetic elements (MGEs) directly affected the changes in abundance of ARGs. As typical MGEs, intl1 and intl2 decreased by 3.40% and 54.32%, respectively. Potential host microorganisms important factors that affected ARGs and MGEs. A network analysis indicated that the potential host microorganisms were primarily distributed in Firmicutes and Proteobacteria at the phylum level. The pH and content of water-extractable sulfur were physicochemical parameters that substantially affected the abundance of potential host microorganisms through redundancy analysis. Industrial-scale rapid composting could reduce the number of ARGs and shorten the composting cycle, which merits its popularization and application.
Показать больше [+] Меньше [-]Bioplastic accumulates antibiotic and metal resistance genes in coastal marine sediments
2021
Di Cesare, Andrea | Pinnell, Lee J. | Brambilla, Diego | Elli, Giulia | Sabatino, Raffaella | Sathicq, María B. | Corno, Gianluca | O'Donnell, Colin | Turner, Jeffrey W.
The oceans are increasingly polluted with plastic debris, and several studies have implicated plastic as a reservoir for antibiotic resistance genes and a potential vector for antibiotic-resistant bacteria. Bioplastic is widely regarded as an environmentally friendly replacement to conventional petroleum-based plastic, but the effects of bioplastic pollution on marine environments remain largely unknown. Here, we present the first evidence that bioplastic accumulates antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in marine sediments. Biofilms fouling ceramic, polyethylene terephthalate (PET), and polyhydroxyalkanoate (PHA) were investigated by shotgun metagenomic sequencing. Four ARG groups were more abundant in PHA: trimethoprim resistance (TMP), multidrug resistance (MDR), macrolide-lincosamide-streptogramin resistance (MLS), and polymyxin resistance (PMR). One MRG group was more abundant in PHA: multimetal resistance (MMR). The relative abundance of ARGs and MRGs were strongly correlated based on a Mantel test between the Bray-Curtis dissimilarity matrices (R = 0.97, p < 0.05) and a Pearson's analysis (R = 0.96, p < 0.05). ARGs were detected in more than 40% of the 57 metagenome-assembled genomes (MAGs) while MRGs were detected in more than 90% of the MAGs. Further investigation (e.g., culturing, genome sequencing, antibiotic susceptibility testing) revealed that PHA biofilms were colonized by hemolytic Bacillus cereus group bacteria that were resistant to beta-lactams, vancomycin, and bacitracin. Taken together, our findings indicate that bioplastic, like conventional petroleum-based plastic, is a reservoir for resistance genes and a potential vector for antibiotic-resistant bacteria in coastal marine sediments.
Показать больше [+] Меньше [-]The role of hydrodynamic fluctuations and wind intensity on the distribution of plastic debris on the sandy beaches of Paraná River, Argentina
2021
Garello, Nicolás | Blettler, Martín C.M. | Espínola, Luis A. | Wantzen, Karl M. | González-Fernández, Daniel | Rodrigues, Stéphane
Plastic in the environment is considered an emerging pollutant of global concern. In spite of intensive research, many questions remain open, such as the processes that drive the deposition and remobilization of plastic debris on river beaches. The objectives of this study were: i) to analyze the influence of the natural hydrological fluctuations and wind intensity on the distribution of mesoplastic (0.5–2.5 cm) and macroplastic (>2.5 cm) debris in beach sediments of a large river, ii) to describe the type of plastic debris found and iii) to explore potential relations between the number of items and weight of macro- and mesoplastics. Our results suggest that, during lowering water levels, flow removes the plastic debris and transports it further downstream. Conversely, when the beach sediments remain exposed during long periods, the plastic debris accumulates considerably. Nevertheless, the influence of wind intensity on plastic debris transport was comparatively negligible. In other words, in our study the water flow had a greater capacity to remobilize and transport plastic debris than the wind. The most abundant mesoplastic items were foam, hard plastic, film and small fragments of fishing line. The dominant macroplastic items recorded were pieces of fishing line (nylon) and cigarette filters (cellulose acetate), typically discarded by beach users. Other items found in large quantities were soft packaging elements (expanded polystyrene), hard plastic containers (polystyrene, polyethylene terephthalate) and beverage bottles (polyethylene terephthalate), typical items of domestic use in the Paraná River region. Finally, we found that the density of macroplastic items is highly correlated to the density of mesoplastic items, serving as surrogate for further estimations. Our results could help to develop better mitigation strategies in seasonal riverscapes, based on the influence of the hydrological cycle and the characteristics of the most abundant meso- and macroplastics.
Показать больше [+] Меньше [-]Land use regression modelling of NO2 in São Paulo, Brazil
2021
Luminati, Ornella | Ledebur de Antas de Campos, Bartolomeu | Flückiger, Benjamin | Brentani, Alexandra | Röösli, Martin | Fink, Günther | de Hoogh, Kees
Air pollution is a major global public health problem. The situation is most severe in low- and middle-income countries, where pollution control measures and monitoring systems are largely lacking. Data to quantify the exposure to air pollution in low-income settings are scarce.In this study, land use regression models (LUR) were developed to predict the outdoor nitrogen dioxide (NO₂) concentration in the study area of the Western Region Birth Cohort in São Paulo. NO₂ measurements were performed for one week in winter and summer at eighty locations. Additionally, weekly measurements at one regional background location were performed over a full one-year period to create an annual prediction.Three LUR models were developed (annual, summer, winter) by using a supervised stepwise linear regression method. The winter, summer and annual models explained 52 %, 75 % and 66 % of the variance (R²) respectively. Cross-holdout validation tests suggest robust models. NO₂ levels ranged from 43.2 μg/m³ to 93.4 μg/m³ in the winter and between 28.1 μg/m³ and 72.8 μg/m³ in summer. Based on our annual prediction, about 67 % of the population living in the study area is exposed to NO₂ values over the WHO suggested annual guideline of 40 μg/m³ annual average.In this study we were able to develop robust models to predict NO₂ residential exposure. We could show that average measures, and therefore the predictions of NO₂, in such a complex urban area are substantially high and that a major variability within the area and especially within the season is present. These findings also suggest that in general a high proportion of the population is exposed to high NO₂ levels.
Показать больше [+] Меньше [-]Source, temporal variation and health risk of volatile organic compounds (VOCs) from urban traffic in harbin, China
2021
Xuan, Lichun | Ma, Yuenan | Xing, Yanfeng | Meng, Qingqing | Song, Jie | Chen, Taihan | Wang, Hao | Wang, Pengjie | Zhang, Yufan | Gao, Peng
The main of this work investigated the levels, emission sources, and associated health risks of ambient volatile organic compounds (VOCs) closed urban traffic trunk from June 2017 to November 2018. The seasonal variation trend for total VOCs (TVOCs) concentrations was autumn > winter > summer > spring. During the daily fluctuations in summer, the TVOC concentrations appeared to be the highest at midnight and the lowest at 14:00. In spring, autumn, and winter, the concentrations of TVOCs reached the highest levels at 06:00 and dropped to the lowest levels at 14:00 to 15:00; then, the levels increased after 20:00. Aromatics were the most important types of ambient VOCs for the formation of secondary organic aerosols (SOAs). The Positive Matrix Factorization (PMF) source analysis indicated that the traffic emission accounted for 28.9% of TVOCs, followed by combustion (24.7%), industrial (21.3%), gasoline volatilization (12.4%), and solvent (11.7%) sources. Carcinogenic and non-carcinogenic risks via inhalation exposure to the selected 10 toxic VOCs may be of more concern for residents nearby traffic trunk in Harbin in autumn.
Показать больше [+] Меньше [-]Diverse effects of accelerating climate change on chemical recovery of alpine lakes from acidic deposition in soil-rich versus scree-rich catchments
2021
Kopáček, Jiří | Kaňa, Jiří | Porcal, Petr | Stuchlík, Evžen
The current recovery of mountain lakes from atmospheric acidification is increasingly affected (both accelerated and/or delayed) by climate change. We evaluated long-term trends in the ionic composition of 30 lakes situated in the alpine zone of the Tatra Mountains, and compared the rates of their recovery with model (MAGIC) simulations done 20 years ago for the 2003–2020 period. The observed recovery was faster than the model forecast, due to greater reductions in acidic deposition than projected. Trends in water composition were further modified by climate change. Rising temperatures increased the length of the growing season and retention of inorganic N and SO₄²⁻ more in soil-rich compared with soil-poor catchments. In contrast, elevated precipitation and an increase in rainfall intensity reduced water residence time in soils, and consequently reduced N retention, especially in soil-poor catchments. It is likely that increases in rainfall intensity and annual number of days without snow, along with air temperatures fluctuating around the freezing point elevated the physical erosion of rocks, especially in high-elevation, steep, and scree-rich areas where rocks are not thermally insulated and stabilized by soils. Weathering of exposed accessory calcite in the eroded granodiorite bedrock was a source of Ca²⁺ and HCO₃⁻, while S-bearing minerals likely contributed to lake water SO₄²⁻ and partly mitigated its deposition-related decrease in scree-rich catchments. The extent of climate effects on changes in the water composition of alpine lakes recovering from acidic deposition thus depended on elevation and cover of soil and scree in catchments. Our results highlight the need for incorporating dominant climate-related process into existing process-based models to increase their reliability in predicting the future development of lake water composition.
Показать больше [+] Меньше [-]