Уточнить поиск
Результаты 1661-1670 из 6,546
Fine sediment particle microscopic characteristics, bioavailable phosphorus and environmental effects in the world largest reservoir Полный текст
2020
Wang, Xiaoxiao | Zhou, Jun | Wu, Yanhong | Bol, Roland | Wu, Yong | Sun, Hongyang | Bing, Haijian
The transport and retention of sediments in fine grain sizes plays an important role in the cycles of phosphorus (P), and is closely related to the extent and potential for eutrophication in water reservoirs. In order to highlight the environmental indications for the transport of fine sediment particles and the associated bioavailable phosphorus (Bio-P) in the world largest reservoir, the Three Gorges Reservoir (TGR), the suspended and bed sediments were collected at 13 sections in 2016. The sediment physicochemical properties, micromorphology of sediment particles, distribution of elements on particle surface, P adsorption parameters, and P fractions in different grain sized sediments were analyzed. The results showed that the fine sediment particles had a strong P adsorption ability due to their micromorphology, mineral compositions, and the high contents of Fe/Al/Mn (hydr)oxides, which contributed a higher concentration of Bio-P in <16 μm sediment particles. The adsorption of P on the sediment particles occurred longitudinally along the TGR, and the fine sediment particles (<16 μm) dominated the transport and distribution of Bio-P in the TGR sediments. The reduced inflow and retention of fine sediment particles, caused by the construction of cascade reservoirs along the Jinsha River (upper reach of the Yangtze River), has resulted in the decrease in the retention of Bio-P in the TGR. Therefore, we conclude that the continuously decrease of inflow and retention of the fine sediment particles in the TGR, and with it a reduced sediment P buffer capacity, may enhance algal blooms occurrence also in view of the increased P discharge from the overall TGR catchment. The study results can contribute to improved management guidance on fine sediment particles and associated phosphorus for the operation and environmental protection of other large reservoirs in the world.
Показать больше [+] Меньше [-]Sensitivity of larval and juvenile freshwater mussels (unionidae) to ammonia, chloride, copper, potassium, and selected binary chemical mixtures Полный текст
2020
Salerno, J. | Gillis, P.L. | Khan, H. | Burton, Evan | Deeth, L.E. | Bennett, C.J. | Sibley, P.K. | Prosser, R.S.
In aquatic environments, organisms such as freshwater mussels are likely exposed to complex contaminant mixtures related to industrial, agricultural, and urban activities. With growing interest in understanding the risk that chemical mixtures pose to mussels, this investigation focused on the effects of various waterborne contaminants (ammonia, chloride, copper, and potassium) and selected binary mixtures of these chemicals following a fixed-ratio design to Villosa iris glochidia and juvenile Lampsilis fasciola. In individual exposures, 48-h EC50 values were determined for V. iris glochidia exposed to ammonia chloride (7.4 [95% confidence interval (CI) 6.6–8.2] mg N/L), ammonia sulfate (8.4 [7.6–9.1] mg N/L), copper sulfate (14.2 [12.9–15.4] μg Cu2+/L), potassium chloride (12.8 [11.9–13.7] mg K+/L), potassium sulfate (10.1 [8.9–11.2] mg K+/L), and sodium chloride (480.5 [435.5–525.5] mg Cl−/L). The 7-d LC50 values for juvenile L. fasciola were determined for potassium sulfate (45.0 [18.8–71.2] mg K+/L), and sodium chloride (1738.2 [1418.6–2057.8] mg Cl−/L). In Ontario these waterborne contaminants have been reported to co-occur, with concentrations exceeding the EC10 for both life stages at some locations. Data from binary mixture exposures for V. iris glochidia (chloride-ammonia, chloride-copper, and copper-ammonia) and juvenile L. fasciola (chloride-potassium) were analyzed using a regression-based, dose-response mixture analysis modeling framework. Results from the mixture analysis were used to determine if an additive model for mixture toxicity [concentration addition (CA) or independent action (IA)] best described the toxicity of each mixture and if deviation towards dose-ratio (DR) or dose-level (DL) synergism/antagonism (S/A) occurred. For all glochidia binary mixture exposures, CA was the best fit model with DL deviation reported for the chloride-copper mixture and DR deviation reported for the copper-ammonia mixture. Using the model deviation ratio (MDR), the observed toxicity in all three glochidia mixture exposures were adequately described by both CA (mean = 0.71) and IA (mean = 0.97) whereas the juvenile mixture exposure was only adequately described by CA (mean = 0.64; IA mean = 0.05).
Показать больше [+] Меньше [-]Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach Полный текст
2020
Blank do Amaral, Aline Monique | Kuhn de Moura, Letícia | de Pellegrin, Dionatan | Guerra, Luciana Joner | Cerezer, Felipe Osmari | Saibt, Nathália | Prestes, Osmar Damian | Zanella, Renato | Loro, Vania Lucia | Clasen, Barbara
Reservoirs are lentic man-made waterbodies resulting from river damming processes. Pollutants coming from adjacent areas can accumulate in the water and sediment of these modified freshwater environments. Fish are often found in reservoirs occupying several trophic niches. Biochemical biomarkers are early warning signals of environmental disturbance to an organism. It is essential to understand how pollutants, abiotic variables and biochemical biomarker responses behave throughout the seasons to implement biomonitoring programs. Loricariichthys anus and Geophagus brasiliensis were collected, and abiotic variables were seasonally measured for one year, at six sampling sites in Passo Real reservoir, in a subtropical region of Southern Brazil. Biochemical biomarkers were analyzed in four tissues of both fish species, as well as metal and pesticide concentrations in the reservoir’s water and sediment. Redundancy analysis (RDA) was carried out to find the temporal relationship between biomarkers and environmental variables. RDA has clearly shown the separation of seasons for both species. Azoxystrobin, simazine and propoxur were the pesticides mostly contributing to the variation, whereas metals had lesser contribution to it. Seasonality appears to be the main factor explaining biomarkers’ variability. PERMANOVA has confirmed the effect of temperature and dissolved oxygen on biomarkers of both fish species. Thus, it is hard to differentiate if the fluctuation in biomarkers’ responses only reflects the normal state of organisms or it is a biological consequence from negative effects of fish exposure to several types of pollution (sewage, pesticides, and fertilizers) entering this aquatic system. In this study, to circumvent the seasonality issue on biomonitoring, the analysis of biomarkers on these fish should not be carried out in organs directly affected by temperature (such as liver and gills), or during reproduction periods (mainly in Spring).
Показать больше [+] Меньше [-]MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure Полный текст
2020
Zhang, Xinwei | Zhang, Yanshu | Meng, Qingtao | Sun, Hao | Wu, Shenshen | Xu, Jie | Yun, Jun | Yang, Xi | Li, Bin | Zhu, Hao | Xue, Ling | Li, Xiaobo | Chen, Rui
Exposure to atmospheric particulate matter (PM) has been related to the increasing incidence and mortality of pulmonary diseases, where microRNAs (miRNAs) play significant roles in these biological and pathological processes. In the present study, we found that miR-382-5p played an anti-inflammatory role in pulmonary inflammation induced by fine particulate matter (PM₂.₅) or diesel exhaust particles (DEPs) in vitro and in vivo. The expression level of miR-382-5p was downregulated, while its target gene, namely CXCL12, was elevated in HBE cells after exposure to PM₂.₅ or DEPs. Mechanistically, PM₂.₅ or DEPs exposure increased CXCL12/MMP9 expression via miR-382-5p inhibition, subsequently triggered pulmonary inflammation. Furthermore, antagonizing the function of CXCL12 significantly reduced the expression of MMP9 and local inflammation induced by PM₂.₅ or DEPs. PM₂.₅ or DEPs caused apoptosis and G1 phase arrest could be partially restored by overexpression of miR-382-5p and antagonism of CXCL12. In a murine model, enhanced miR-382-5p expression effectively reduced expression levels of CXCL12, MMP9 and inflammatory cytokines, hereby protected lung tissues against PM₂.₅ or DEPs-induced lesions. Collectively, the miR-382-5p/CXCL12/MMP9 pathway may provide a mechanism, which mediates inflammatory response to PM₂.₅ or DEPs exposure.
Показать больше [+] Меньше [-]Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa Полный текст
2020
Gomez Isaza, Daniel F. | Cramp, Rebecca L. | Franklin, Craig E.
Nutrient effluents from urban and agricultural inputs have resulted in high concentrations of nitrate in freshwater ecosystems. Exposure to nitrate can be particularly threatening to aquatic organisms, but a quantitative synthesis of the overall effects on amphibians, amphipods and fish is currently unavailable. Moreover, in disturbed ecosystems, organisms are unlikely to face a single stressor in isolation, and interactions among environmental stressors can enhance the negative effects of nitrate on organisms. Here, the effects of elevated nitrate on activity level, deformity rates, hatching success, growth and survival of three taxonomic groups of aquatically respiring organisms are documented. Effect sizes were extracted from 68 studies and analysed using meta-analytical techniques. The influence of nitrate on life-stages was also assessed. A factorial meta-analysis was conducted to examine the effect of nitrate and its interaction with other ecological stressors on organismal survival. Overall, the impacts of nitrate are biased towards amphibians (46 studies) and fish (13 studies), and less is known about amphipods (five studies). We found that exposure to nitrate translates to a 79% decrease in activity, a 29% decrease in growth, and reduces survival by 62%. Nitrate exposure also increases developmental deformities but does not affect hatching success. Nitrate exposure was found to influence all life-stages except embryos. Differences in the sensitivity of nitrate among taxonomic groups tended to be negligible. The factorial meta-analysis (14 amphibians and two amphipod studies) showed that nitrate in combination with other stressors affects survival in a non-additive manner. Our results indicate that nitrate can have strong effects on aquatic organisms and can interact with other environmental stressors which compound the negative effects on survival. Overall, the impacts of nitrate and additional stressors are complex requiring a holistic approach to better conserve freshwater biodiversity in the face of ongoing global change.
Показать больше [+] Меньше [-]Electrochemical removal of levofloxacin using conductive graphene/polyurethane particle electrodes in a three-dimensional reactor Полный текст
2020
Guo, Cuicui | Liu, Haiyang | Wang, Chengzhi | Zhao, Jianchen | Zhao, Wenjun | Lu, Nan | Qu, Jiao | Yuan, Xing | Zhang, Ya-nan
The conductive polyurethane/polypyrrole/graphene (CPU/PPy/Gr) particle electrode was prepared by an in-situ oxidative polymerization method and used as particle electrodes to degrade levofloxacin (LEV) in a three-dimensional electrode reactor. The prepared CPU/PPy/Gr electrode was characterized systematically and the effects of initial pH, initial LEV concentration, aeration volume, voltage, and electrolyte concentration on the degradation efficiency were investigated. Results showed that more than 90% LEV was degraded and the energy consumption was 20.12 kWh/g LEV under conditions of pH 7, 6 V voltage, 2.0 L/min aeration volume, 20 mg/L initial LEV concentration, and 7 mM concentration of electrolyte (Na₂SO₄). A possible electrochemical oxidation pathway of LEV by the CPU/PPy/Gr electrode was proposed. In addition, the biotoxicity of LEV and its oxidation products was calculated using ECOSAR (Ecological Structure Activity Relationships) program in EPISuite. Toxicity evaluation using luminescent bacteria showed that the toxicities of some intermediates were higher than the parent compound. But the toxicity of degradation processes for LEV was effective decreasing. A possible reactive mechanism in the three-dimensional reactor was also recommended. In brief, the prepared CPU/PPy/Gr particle electrode constitutes an insight into the promising practical application in the wastewater treatment.
Показать больше [+] Меньше [-]Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China Полный текст
2020
Liu, Xuan | Wang, Hua | Zhao, Huimin
The increasing prevalence and spread of antibiotic resistance genes (ARGs) in intensive aquaculture environments are of great concern to food safety and public health. However, the level of ARGs and their potential propagation factors in an industrial recirculating aquaculture system (RAS) have not previously been comprehensive explored. In this study, the levels of 14 different ARG markers and 2 kinds of mobile genetic elements (MGEs) were investigated in a RAS (including water, fish, feces, pellet feed meal, and biofilm samples) located northern China. qnrA, qnrB, qnrS, qepA, aac(6′)-Ib, and floR were dominant ARGs, which average concentration levels were presented at 4.51–7.74 copies/L and 5.36–13.07 copies/g, respectively, suggesting that ARGs were prevalent in RAS with no recorded history of antibiotic use. Elevated level of ARGs was found in water of RAS even after the final UV treatment compared with its influent. In RAS, Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes were the predominant phyla. Notably, elevated levels of potential opportunistic pathogens were observed along with abundant ARGs suggesting an increasing risk of capturing ARGs and MGEs for human pathogens. This study has revealed for the first time that reared fish, their feces, pellet feed meal as the introduction sources and the selection roles of treatment units co-driven the ARG profile, and the co-selection of water environmental factors and their consequently induced bacterial community shifts formed by their influence are the determining drivers for the ARG propagation in RAS.
Показать больше [+] Меньше [-]The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling Полный текст
2020
Chen, Hongping | Wang, Peng | Gu, Yi | Kretzschmar, Ruben | Kopittke, Peter M. | Zhao, Fang-Jie
Rice is a major dietary source of the toxic trace metal Cd. Large variation in Cd concentration in rice grain was documented by global and regional surveys, with this variation difficult to predict from soil tests. Even within individual fields, a large spatial variation is often observed but the factors controlling this within-field spatial variation are still poorly understood. In the present study, we used field- and laboratory-based experiments to investigate the effects of a gentle slope gradient within paddy fields (a common farmers’ practice to facilitate water flow from the inlet to the outlet) on Cd availability and grain Cd concentrations in unlimed and limed soils. In our field experiments, a gentle slope resulted in large spatial variations in soil redox potential (Eh) and pH upon soil drainage during rice grain filling. As a result of these variations in Eh and pH, there was a 6- to 7-fold spatial within-field variation in grain Cd concentrations, which were the highest in the irrigation inlet area associated with higher Eh values and the lowest in the outlet area with lower Eh values. Our results highlight that soil Eh, and more importantly, field-moist soil pH during grain filling determine grain Cd concentration and accordingly, incorporating measurements of soil redox status (or water content) and pH of field moist soils (rather than air-dried soils) during grain filling may improve the prediction of grain Cd concentrations. Delaying drainage during grain filling or increasing soil pH by liming is effective in reducing grain Cd accumulation.
Показать больше [+] Меньше [-]Transcriptome analysis reveals the mechanism of fluorine exposure on memory loss of common carp Полный текст
2020
Zhang, Yue | Zhang, Peijun | Yu, Peng | Shang, Xinchi | Lu, Yuting | Li, Yuehong
Fluorine, an environmental toxicant in our daily life, has been reported to have adverse effects on nervous system. Previous studies demonstrated that fluorine exposure could induce brain injury in fish and human. However, the possible mechanism remains unclear. In the present study, we aimed to reveal the mechanism of fluorine exposure on brain injury of common carp through transcriptome analysis. In the fluorine-exposed carp, 444 brain genes were up-regulated, whereas 742 genes were down-regulated. DNA-templated (regulation of transcription) and multicellular organism development in the GO function annotation accounted for the most biological processes. Nucleus and membrane accounted for the most cellular components and DNA binding and metal ion binding accounted for the most molecular function. Meanwhile, 196 metabolic pathways were identified in Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway significant enrichment analysis, including long-term depression, Cushing syndrome, nuclear receptors, vascular smooth muscle contraction, Ion channels, and other pathways. Furthermore, we found that the up-regulated and down-regulated trends were similar between the quantitative real-time-PCR and RNA-Seq results, which indicate the transcriptome sequencing data is reliable. In conclusion, our data may provide insights into the mechanisms underlying brain injury induced by fluorine exposure.
Показать больше [+] Меньше [-]Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study Полный текст
2020
Liu, Wenfu | Feng, Yu | Zhong, Huan | Ptacek, Carol | Blowes, David | Liu, Yingying | Finfrock, Y Zou | Liu, Peng | Wang, Sheng
Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl₃-modified, and FeSO₄-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO₄-modified biochars after aqua regia digestion was significantly lower than in FeCl₃-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)–Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.
Показать больше [+] Меньше [-]