Уточнить поиск
Результаты 171-180 из 4,937
Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L. Полный текст
2019
Wechtler, Laura | Laval-Gilly, Philippe | Bianconi, Olivier | Walderdorff, Louise | Bonnefoy, Antoine | Falla-Angel, Jaïro | Henry, Sonia | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Communauté d’Agglomération du Val de Fensch | IUT de Thionville-Yutz ; Université de Lorraine (UL)
International audience | Several human activities such as mining, smelting, or transportations lead to trace metal pollution in soil. The presence of these pollutants can represent environmental and organism health risks. Phytoextraction can be used to remediate trace metal-contaminated soils. It uses the plants' ability to remove trace metals from soil and to accumulate them in their shoots, which can then be harvested. We studied the spontaneous vegetation growing on a brownfield located in France. The use of native plants is interesting since spontaneous vegetation is already well adapted to the site's environmental conditions leading to a better survival and growth than non-native plants. Ten native plant species were sampled, and the Cr, Cu, Cd, Ni, Pb, and Zn concentrations present in their shoots were measured. In order to determine the plant's capacity to extract trace metals from the soil, the bioconcentration factor (BCF) was calculated for each plant and trace metal. Plants with a BCF greater than 1 are able to accumulate trace metals in their shoots and could be a good candidate to be used in phytoextraction. Results underscored one new accumulator plant for Zn, Tussilago farfara L., with a BCF value of 3.069. No hyperaccumulator was found among the other sampled plants. Our preliminary study showed that T. farfara is able to accumulate zinc in its shoots. Moreover, this native plant is a pioneer species able to quickly colonize various habitats by vegetative multiplication. That is why T. farfara L. could be interesting for zinc phytoextraction and could be worth further studies.
Показать больше [+] Меньше [-]Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine European metropolitan areas: A study on environmental inequality Полный текст
2019
Samoli, E. | Stergiopoulou, A. | Santana, P. | Rodopoulou, S. | Mitsakou, C. | Dimitroulopoulou, C. | Bauwelinck, M. | de Hoogh, K. | Costa, C. | Marí-Dell'Olmo, M. | Corman, D. | Vardoulakis, S. | Katsouyanni, K.
A limited number of studies have addressed environmental inequality, using various study designs and methodologies and often reaching contradictory results. Following a standardized multi-city data collection process within the European project EURO-HEALTHY, we conducted an ecological study to investigate the spatial association between nitrogen dioxide (NO2), as a surrogate for traffic related air pollution, and ten socioeconomic indicators at local administrative unit level in nine European Metropolitan Areas. We applied mixed models for the associations under investigation with random intercepts per Metropolitan Area, also accounting for the spatial correlation. The stronger associations were observed between NO2 levels and population density, population born outside the European Union (EU28), total crimes per 100,000 inhabitants and unemployment rate that displayed a highly statistically significant trend of increasing concentrations with increasing levels of the indicators. Specifically, the highest vs the lowest quartile of each indicator above was associated with 48.7% (95% confidence interval (CI): 42.9%, 54.8%), 30.9% (95%CI: 22.1%, 40.2%), 19.8% (95%CI: 13.4%, 26.6%) and 15.8% (95%CI: 9.9%, 22.1%) increase in NO2 respectively.The association with population density most probably reflects the higher volume in vehicular traffic, which is the main source of NO2 in urban areas. Higher pollution levels in areas with higher percentages of people born outside EU28, crime or unemployment rates indicate that worse air quality is typically encountered in deprived European urban areas. Policy makers should consider spatial environmental inequalities to better inform actions aiming to lower urban air pollution levels that will subsequently lead to improved quality of life, public health and health equity across the population.
Показать больше [+] Меньше [-]Role of PM2.5 in the photodegradation of the atmospheric benzene Полный текст
2019
Liu, Chunqiong | Zhang, Xiaohui | Wang, Qingeng | Shi, Kai
The presence of PM₂.₅ may affect the photodegradation of benzene in the natural atmosphere. On one hand, the photodegradation of benzene may be promoted with the increase in PM₂.₅ concentrations, owing to adsorption and catalysis effect of PM₂.₅ surface; On the other hand, PM₂.₅ can scatter or block ultraviolet light and lead to weakening the photochemical reactions in the atmospheric system. It is very difficult to prove which process is dominant in the real atmosphere due to the complexity of the atmosphere. Based on coupling detrended fluctuation analysis, the goal of this work is to reveal the role of PM₂.₅ in the photodegradation of benzene in real atmosphere over long time scales. The 9 years regular monitoring data from 2007 to 2016 in Puzi of Taiwan are analyzed. A new nonlinear parameter (PDB) is established to characterize the photodegradation degree of atmospheric benzene. Based on sliding window technique, the correlations between the temporal variation of PDB and PM₂.₅ are analyzed. The results show that there is a positive correlation between PDB and PM₂.₅ in daytime and little correlation between them in nighttime. It indicates that PM₂.₅ mainly plays the promoting effect on the photodegradation of atmospheric benzene. This is the first study to directly determine the role of PM₂.₅ in the photochemical behavior of atmospheric benzene based on long term field observation data. Moreover, the results suggest that the regional transport of PM₂.₅ could seriously affect the geochemistry cycle of some VOCs. This research provides a new analysis method to directly quantify the effect of PM₂.₅ on the photodegradation of VOCs in the real atmosphere. It is helpful for evaluating the role of PM₂.₅ in the complex photochemical system.
Показать больше [+] Меньше [-]Hepatotoxicity of perfluorooctanoic acid and two emerging alternatives based on a 3D spheroid model Полный текст
2019
Sun, Sujie | Guo, Hua | Wang, Jianshe | Dai, Jiayin
Perfluorooctanoic acid (PFOA) toxicity is of considerable concern due to its wide application, environmental persistence, and bioaccumulation. In the current study, we used a scaffold-free three-dimensional (3D) spheroid model of mouse liver cells (AML12) to explore the toxicity of PFOA and emerging alternatives (HFPO-DA and PFO4DA). Comparing the short-term (24 and 72 h treatment) toxicity of PFOA between conventional 2D monolayer cells and 3D spheroids, we found that spheroids had higher EC₅₀ values and lower ROS levels after treatment, indicating their greater resistance to PFOA. Cell viability (i.e., adenosine triphosphate (ATP) content and lactate dehydrogenase (LDH) leakage) and liver-specific function (i.e., albumin secretion) were stable in spheroids through 28 day of culture. However, under 100 and 200 μM-PFOA treatment for 28 day, ROS levels, LDH leakage, and caspase3/7 activity all increased significantly. As a sensitive parameter, ROS showed a significant increase at 21 day, even in the 50 μM-PFOA group. Consistent with the elevation of ROS and caspase3/7, the expressions of oxidative stress- and apoptosis-related genes, including Gsta2, Nqo1, Ho-1, caspase3, p53, and p21, were induced in dose- and time-dependent manners after PFOA exposure. The peroxisome proliferator-activated receptor alpha (PPARα) pathway was also activated after treatment, with significant induction of its target genes, Fabp4 and Scd1. Similar to PFOA, both HFPO-DA and PFO4DA activated the PPARα pathway, induced ROS levels, and initiated cell damage, though at a relatively lower extent than that of PFOA. Our results imply that the 3D spheroid model is a valuable tool in chronic toxicological studies.
Показать больше [+] Меньше [-]Using multivariate statistical analyses to identify and evaluate the main sources of contamination in a polluted river near to the Liaodong Bay in Northeast China Полный текст
2019
Bu, Hongmei | Song, Xianfang | Zhang, Yuan
Using multivariate statistical analysis, the study evaluated anthropogenic sources of river water contamination and their relationships with river water quality in the Haicheng River basin near to the Liaodong Bay in Northeast China. The results showed that nitrogen (N) and phosphorous (P) were identified as the main pollutants in the river water by factor analysis. Human population and elevational gradient were all significantly correlated with N, P, and other water quality variables in correlation analysis and explained chemical oxygen demand (COD), N, and P variables from 23.9% (TN) to 53.1% (NH3+-N) of the total variances in regression analysis, indicating that population and its distribution were all responsible for river contaminations, especially for COD, N, and P contaminations. The excessive applications of fertilizers and pesticides were all positively correlated with nitrogen variables and nitrogen pollution factor in correlation analysis, suggesting that agricultural activities were contributed to the river nitrogen pollution. Due to inadequate or lack wastewater treatment facilities, huge amounts of domestic sewage and industrial effluents were released into the river, becoming the predominant anthropogenic sources for the river water deterioration of COD, N, and P. Multivariate statistical analysis provided useful tools to correlate sources of contamination with water quality data. This approach will provide a better management for river pollution control in a human-driven river ecosystem.
Показать больше [+] Меньше [-]Glutathione biosynthesis plays an important role in microcystin-LR depuration in lettuce and spinach Полный текст
2019
Cao, Qing | Liu, Weijing | Jiang, Weili | Shu, Xiubo | Xie, Liqiang
Irrigation of crop plants with microcystins (MCs) contaminated water could be a threat to human health via bioaccumulation. Despite the fact MCs bioaccumulation in crop plants is well documented, MCs depuration, as well as the mechanism involved remains unclear. The objectives of the present study were to investigate the bioaccumulation and depuration of microcystin-LR (MC-LR) in lettuce (Lactuca sativa L.) and spinach (Spinacia oleracea L.), as well as to explore the role of glutathione (GSH) biosynthesis in MC-LR depuration. The tested plants were irrigated with deionized water containing 10 μg L⁻¹ MC-LR for 12 days (bioaccumulation), and subsequently, with either deionized water only or deionized water containing 0.5 mM buthionine sulfoximine (BSO, a specific inhibitor of GSH biosynthesis) for 12 days (depuration). After bioaccumulation period, highest concentrations of MC-LR found in lettuce and spinach were 114.4 and 138.5 μg kg⁻¹ dry weight (DW) respectively. Depuration rates of MC-LR in lettuce and spinach were 9.5 and 8.1 μg kg⁻¹ DW d⁻¹, which deceased to 3.7 and 4.6 μg kg⁻¹ DW d⁻¹ in treatments with BSO application. GSH content in both lettuce and spinach were not significantly affected during depuration without BSO; whereas after treatment with BSO, GSH content significantly decreased by 36.0% and 24.7% in lettuce and spinach on 15 d, and the decrease remained on 18 d and 21 d in lettuce. Moreover, during the bioaccumulation period, activities of glutathione reductase (GR) and glutathione S-transferase (GST) were enhanced in both plants. Our results suggested that GSH biosynthesis played an important role in MC-LR depuration in the tested plants. Concerning human health risk, most of the estimated daily intake (EDI) values during the bioaccumulation period exceeded the tolerable daily intake (TDI) guideline. However, the risk could be alleviated by irrigating with MCs-free water for a certain amount of time before harvest.
Показать больше [+] Меньше [-]Trace elements exposure of endangered crested ibis (Nipponia nippon) under in situ and ex situ conservations Полный текст
2019
Liu, Qiang | Chen, Yiping | Maltby, Lorraine | Zheng, Yingjuan | Ma, Qingyi
Crested ibis (Nipponia nippon), one of the rarest birds in the world, was almost extinct in the historically widespread areas partly due to the environmental pollution. Therefore, non-invasive indicators of feather, eggshell, and excrement were used to investigate the exposure of this endangered bird to eleven trace elements in this study. The results indicated that crested ibises under in situ and ex situ conservations were diversely exposed to trace elements, with higher exposure levels of As, Cd, and Mn in the wild, but higher exposure levels of Hg, Se, and Zn in the captive breeding center. In addition, concentrations of As, Co, Cr, and Ni were significantly greater in the sediments of three types of foraging habitats for wild crested ibis, but concentration of Se was greater in the soil of captive cages. Feather and eggshell of crested ibis exhibited a very consistent indication for most of the trace elements, and concentrations of almost all of the elements in the excrements were very consistent with the results in the environmental samples (sediments or soils). Concentrations of As, Hg, Mn, and Zn in feathers, and Mn and Zn in eggshells of wild and captive crested ibis were greater than those in other similar species. Moreover, As, Cd, Cu, and Mn concentrations in excrement of wild crested ibises were greater than that in captive individuals and other species, but Se and Zn concentrations in excrement of captive crested ibises were greater than that of the wild and other species. The present study provided evidence that both of the wild and captive crested ibis were exposed to trace elements, which may be harmful to their health.
Показать больше [+] Меньше [-]Polystyrene microplastics cause tissue damages, sex-specific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma) Полный текст
2019
Wang, Jun | Li, Yuejiao | Lü, Lin | Zheng, Mingyi | Zhang, Xiaona | Tian, Hua | Wang, Wei | Ru, Shaoguo
The ubiquity of microplastics in the world's ocean has aroused great concern. However, the ecological effects of microplastics at environmentally realistic concentrations are unclear. Here we showed that exposure of marine medaka (Oryzias melastigma) to environmentally relevant concentrations of 10 μm polystyrene microplastics for 60 days not only led to microplastic accumulation in the gill, intestine, and liver, but also caused oxidative stress and histological changes. Moreover, 2, 20, and 200 μg/L microplastics delayed gonad maturation and decreased the fecundity of female fish. Alterations of the hypothalamus-pituitary-gonadal (HPG) axis were investigated to reveal the underlying mechanisms, and gene transcription analysis showed that microplastic exposure had significantly negative regulatory effects in female HPG axis. Transcription of genes involved in the steroidogenesis pathway in females were also downregulated. This disruption resulted in decreased concentrations of 17β-estradiol (E₂) and testosterone (T) in female plasma. Furthermore, parental exposure to 20 μg/L microplastics postponed the incubation time and decreased the hatching rate, heart rate, and body length of the offspring. Overall, the present study demonstrated for the first time that environmentally relevant concentrations of microplastics had adverse effects on the reproduction of marine medaka and might pose a potential threat to marine fish populations.
Показать больше [+] Меньше [-]Effects of ZnO nanoparticles on high-rate denitrifying granular sludge and the role of phosphate in toxicity attenuation Полный текст
2019
Cheng, Ya-Fei | Zhang, Zheng-Zhe | Li, Gui-Feng | Zhu, Bing-Qian | Zhang, Qian | Liu, Ying-Yi | Zhu, Wei-Qin | Fan, Nian-Si | Jin, Ren-Cun
The increasing release of engineered nanoparticles (NPs) from consumer products has raised great concerns about their impacts on biological wastewater treatment. In this study, the widely-used ZnO NP was selected as a model NP to investigate its impact on high-rate denitrifying granular sludge in terms of sludge properties and community structure. A hormesis effect was observed during short-term exposure, in which the specific denitrification activity (SDA) was stimulated by 10% at 1 mg L⁻¹ ZnO NPs, but inhibited by 23% at 5.0 mg L⁻¹ ZnO NPs. When continuously exposed to 2.5 mg L⁻¹ ZnO NPs, the nitrogen removal capacity of the denitrification reactor was nearly deprived within 15 days, and the relative abundance of the dominant denitrifying bacterium (Castellaniella) was decreased from 51.0 to 8.0%. Meanwhile, the dehydrogenase activity (DHA) and the content of extracellular polymeric substance (EPS) significantly decreased to 22.3 and 61.1%, respectively. Nevertheless, the presence of phosphate substantially weakened the adverse effects of ZnO NPs on the SDA, EPS, DHA and the relative abundance of functional genes even exposed to 6.25 mg L⁻¹ ZnO NPs, which was associated with the fact that the level of Zn(II) released from ZnO NPs was significantly reduced in the presence of phosphate. Therefore, the toxicity of ZnO NPs may be mainly attributed to the release of toxic Zn(II) and could be attenuated in the presence of phosphate. Overall, this study provided further reference and meaningful insights into the impact of engineered NPs on biological wastewater treatment.
Показать больше [+] Меньше [-]Association between urinary thiodiglycolic acid level and hepatic function or fibrosis index in school-aged children living near a petrochemical complex Полный текст
2019
Wang, Zhiwen | Liao, Kai-Wei | Chan, Chang-Chuan | Yu, Ming-Lung | Chuang, Hung-Yi | Chiang, Hung-Che | Huang, Po-Chin
The effect of exposure to vinyl chloride monomer (VCM) on susceptibility to hepatotoxicity in children is unknown, although experimental studies have demonstrated a significantly increased risk of hepatocellular carcinoma in rodents exposed to VCM in early life. Epidemiological studies have revealed a high prevalence of liver fibrosis and abnormal liver function in workers exposed to high VCM levels. We aimed to assess the association among urinary thiodiglycolic acid (TDGA) level, abnormal liver function, and hepatic fibrosis in school-aged children living near a petrochemical complex. A total of 303 school-aged (6–13 years) children within 10 km nearly a petrochemical complex was recruited in central Taiwan. First-morning urine and blood samples were collected from each subject, and urinary TDGA level was analyzed through liquid chromatography–tandem mass spectrometry. Liver function was determined by serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Hepatic fibrosis was assessed using the AST to platelet ratio index (APRI) and fibrosis-4 score (FIB-4). Risk of hepatotoxicity induced by TDGA exposure was estimated using multivariate logistic regression. The median (range, subclinically abnormal %) AST and ALT levels of all subjects were 26.0 (17.0–99.0, 25.7%) and 15.0 (7.0–211.0, 5.9%) IU/L, respectively. Children in the highest urinary TDGA quartile (≥160.0 μg/g creatinine) exhibited significantly elevated median AST levels compared with those in the lowest quartiles (<35.4 μg/g creatinine, p = 0.033). After adjustment for potential confounding factors, children in the highest quartiles (Q₄) of TDGA level had significantly increased odds ratio (OR) of subclinically abnormal AST (OR = 3.86; 95% confidence interval: 1.54–9.67) compared with those in the lowest quartile. A dose-response trend (p = 0.004) was observed. Our findings support the hypothesis that elevated urinary TDGA level in children living near petrochemical complex is associated with susceptibility to hepatotoxicity.
Показать больше [+] Меньше [-]