Уточнить поиск
Результаты 1711-1720 из 3,201
Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus?
2015
Murugan, Kadarkarai | Venus, Joseph Selvaraj Eugine | Panneerselvam, Chellasamy | Bedini, Stefano | Conti, Barbara | Nicoletti, Marcello | Sarkar, Santosh Kumar | Hwang, Jiang-Shiou | Subramaniam, Jayapal | Madhiyazhagan, Pari | Kumar, Palanisamy Mahesh | Dinesh, Devakumar | Suresh, Udaiyan | Benelli, Giovanni
Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Furthermore, pathogens and parasites polluting water also constitute a severe plague for populations of developing countries. In this study, silver nanoparticles (AgN) were biosynthesized a cheap aqueous extract of T. asiatica leaves as reducing and stabilizing agent. The formation of nanoparticle was confirmed by surface Plasmon resonance band illustrated in UV–vis spectrophotometer. AgN were characterized by FTIR, SEM, EDX, and XRD analyses. AgN were mostly spherical in shape, crystalline in nature, with face-centered cubic geometry, and their mean size was 25–30 nm. T. asiatica aqueous extract and green-synthesized AgN showed excellent larvicidal and pupicidal toxicity against the filariasis vector Culex quinqufasciatus, both in laboratory and field experiments. AgN LC₅₀ ranged from 16.48 (I instar larvae) to 31.83 ppm (pupae). T. asiatica-synthesized were also highly effective in inhibiting growth of Bacillus subtilis, Klebsiella pneumoniae, and Salmonella typhi using the agar disk diffusion and minimum inhibitory concentration protocol. Lastly, we evaluated if sublethal doses of nanoparticles affect predation rates of fishes, Poecilia reticulata, against C. quinquefasciatus. In AgN-contaminated environment, predation of guppies against mosquito larvae was slightly higher over normal laboratory conditions. Overall, this study highlighted that T. asiatica-synthesized AgN are easy to produce, stable over time, and may be employed at low dosages to reduce populations of filariasis vectors, without detrimental effects on predation rates of mosquito natural enemies.
Показать больше [+] Меньше [-]Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp. pekinensis
2015
Baskar, Venkidasamy | Venkatesh, Jelli | Park, Se Won
Silver nanoparticles (AgNPs) were extensively used in various fields, particularly in medicine as an antimicrobial agent. The unavoidable and extensive usage of AgNPs in turn accumulates in the environment. Plants are the essential base of ecosystem and are ready to disturb by environmental pollutants. Therefore, in the present study, we have planned to evaluate the impact of biologically synthesized AgNPs on the essential food crop Chinese cabbage (Brassica rapa ssp. pekinensis). The effects of AgNP-induced plant morphological and physiological changes were investigated in different concentrations (100, 250, and 500 mg/L). The results of morphological features showed that AgNPs at lower concentrations (100 mg/L) exhibit growth-stimulating activity, whereas at higher concentrations (250 and 500 mg/L), particularly, 500 mg/L exhibited growth-suppressing activities which are in terms of reduced root, shoot growth, and fresh biomass. The increased reactive oxygen species (ROS) generation, malondialdehyde production, anthocyanin biosynthesis, and decreased chlorophyll content were also more obviously present at higher concentrations of AgNPs. The concentration-dependent DNA damage was observed in the AgNP-treated plants. The molecular responses of AgNPs indicate that most of the genes related to secondary metabolism (glucosinolates, anthocyanin) and antioxidant activities were induced at higher concentrations of AgNP treatment. The dose-dependent phytotoxicity effects of AgNPs were also observed. Taken together, the highest concentration of AgNPs (500 mg/L) could induce growth-suppressing activities via the induction of ROS generation and other molecular changes in B. rapa seedlings.
Показать больше [+] Меньше [-]Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa
2015
Kamran, Muhammad Aqeel | Syed, Jabir Hussain | Eqani, Syed Ali Musstjab Akber Shah | Munis, Muhammad Farooq Hussain | Chaudhary, Hassan Javed
Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.
Показать больше [+] Меньше [-]Spatial distribution and health risk assessment of toxic metals associated with receptor population density in street dust: a case study of Xiandao District, Changsha, Middle China
2015
Li, Fei | Huang, Jinhui | Zeng, Guangming | Huang, Xiaolong | Liu, Wenchu | Wu, Haipeng | Yuan, Yujie | He, Xiaoxiao | Lai, Mingyong
Spatial characteristics of the properties (dust organic material and pH), concentrations, and enrichment levels of toxic metals (Ni, Hg, Mn and As) in street dust from Xiandao District (Middle China) were investigated. Method of incorporating receptor population density into noncarcinogenic health risk assessment based on local land use map and geostatistics was developed to identify their priority pollutants/regions of concern. Mean enrichment factors of studied metals decreased in the order of Hg ≈ As > Mn > Ni. For noncarcinogenic effects, the exposure pathway which resulted in the highest levels of exposure risk for children and adults was ingestion except Hg (inhalation of vapors), followed by dermal contact and inhalation. Hazard indexes (HIs) for As, Hg, Mn, and Ni to children and adults revealed the following order: As > Hg > Mn > Ni. Mean HI for As exceeded safe level (1) for children, and the maximum HI (0.99) for Hg was most approached the safe level. Priority regions of concern were indentified in A region at each residential population density and the areas of B at high and moderate residential population density for As and the high residential density area within A region for Hg, respectively. The developed method was proved useful due to its improvement on previous study for making the priority areas of environmental management spatially hierarchical and thus reducing the probability of excessive environmental management.
Показать больше [+] Меньше [-]Occurrence and behaviors of fluorescence EEM-PARAFAC components in drinking water and wastewater treatment systems and their applications: a review
2015
Yang, Liyang | Hur, Jin | Zhuang, Wane
Fluorescence excitation emission matrices-parallel factor analysis (EEM-PARAFAC) is a powerful tool for characterizing dissolved organic matter (DOM), and it is applied in a rapidly growing number of studies on drinking water and wastewater treatments. This paper presents an overview of recent findings about the occurrence and behavior of PARAFAC components in drinking water and wastewater treatments, as well as their feasibility for assessing the treatment performance and water quality including disinfection by-product formation potentials (DBPs FPs). A variety of humic-like, protein-like, and unique (e.g., pyrene-like) fluorescent components have been identified, providing valuable insights into the chemical composition of DOM and the effects of various treatment processes in engineered systems. Coagulation/flocculation-clarification preferentially removes humic-like components, and additional treatments such as biological activated carbon filtration, anion exchange, and UV irradiation can further remove DOM from drinking water. In contrast, biological treatments are more effective for protein-like components in wastewater treatments. PARAFAC components have been proven to be valuable as surrogates for conventional water quality parameter, to track the changes of organic matter quantity and quality in drinking water and wastewater treatments. They are also feasible for assessing formations of trihalomethanes and other DBPs and evaluating treatment system performance. Further studies of EEM-PARAFAC for assessing the effects of the raw water quality and variable treatment conditions on the removal of DOM, and the formation potentials of various emerging DBPs, are essential for optimizing the treatment processes to ensure treated water quality.
Показать больше [+] Меньше [-]Spread of extended-spectrum beta-lactamase-producing Escherichia coli from a swine farm to the receiving river
2015
Li, Song | Song, Wengang | Zhou, Yufa | Tang, Yujing | Gao, Yanxia | Miao, Zengmin
The dissemination of drug-resistant bacteria into different environments has posed a grave threat to public health, but data on the spread of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) from animal farms to the receiving river are limited. Here, 57 ESBL-producing E. coli isolated from a pig farm and the receiving river were analyzed in terms of drug resistance, ESBL genes, and enterobacterial repetitive intergenic consensus (ERIC). The results showed that ESBL-producing E. coli from swine feces and downstream water of the pig farm outfall overlapped substantially in drug resistance and ESBL genes. Additionally, six ESBL-producing E. coli from the downstream water exhibited 100 % genetic similarity with strains from the swine feces. In conclusion, effluents of animal farms are a likely contributor to the presence of ESBL-producing E. coli in aquatic environments.
Показать больше [+] Меньше [-]Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.)
2015
Rusan, Munir J. M. | Albalasmeh, Ammar A. | Zuraiqi, Said | Bashabsheh, Mohammad
Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 ∘C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if OMW will be used for irrigating crops, it has to be first treated or diluted with tap water at a ratio of 1:3 OMW:water at least. The most efficient treatment techniques in reducing the phytotoxicity of OMW were the MF+RO, followed by SFO and JR.
Показать больше [+] Меньше [-]Biochar efficiency in pesticides sorption as a function of production variables—a review
2015
Yavari, Saba | Malakahmad, Amirhossein | Sapari, Nasiman B.
Biochar is a stabilized, carbon-rich by-product derived from pyrolysis of biomass. Recently, biochar has received extensive attentions because of its multi-functionality for agricultural and environmental applications. Biochar can contribute to sequestration of atmosphere carbon, improvement of soils quality, and mitigation of environmental contaminations. The capability of biochar for specific application is determined by its properties which are predominantly controlled by source material and pyrolysis route variables. The biochar sorption potential is a function of its surface area, pores volume, ash contents, and functional groups. The impacts of each production factors on these characteristics of biochar need to be well-understood to design efficient biochars for pesticides removal. The effects of biomass type on biochar sorptive properties are determined by relative amounts of its lingo-cellulosic compounds, minerals content, particles size, and structure. The highest treatment temperature is the most effective pyrolysis factor in the determination of biochar sorption behavior. The expansion of micro-porosity and surface area and also increase of biochar organic carbon content and hydrophobicity mostly happen by pyrolysis peak temperature rise. These changes make biochar suitable for immobilization of organic contaminants. Heating rate, gas pressure, and reaction retention time after the pyrolysis temperatures are sequentially important pyrolysis variables effective on biochar sorptive properties. This review compiles the available knowledge about the impacts of production variables on biochars sorptive properties and discusses the aging process as the main factor in post-pyrolysis alterations of biochars sorption capacity. The drawbacks of biochar application in the environment are summarized as well in the last section.
Показать больше [+] Меньше [-]Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review
2015
Careghini, Alessando | Mastorgio, Andrea Filippo | Saponaro, Sabrina | Sezenna, Elena
Contaminants of emerging concern (CECs) are not commonly monitored in the environment, but they can enter the environment from a variety of sources. The most worrying consequence of their wide use and environmental diffusion is the increase in the possible exposure pathways for humans. Moreover, knowledge of their behavior in the environment, toxicity, and biological effects is limited or not available for most CECs. The aim of this work is to edit the state of the art on few selected CECs having the potential to enter the soil and aquatic systems and cause adverse effects in humans, wildlife, and the environment: bisphenol A (BPA), nonylphenol (NP), benzophenones (BPs), and benzotriazole (BT). Some reviews are already available on BPA and NP, reporting about their behavior in surface water and sediments, but scarce and scattered information is available about their presence in soil and groundwater. Only a few studies are available about BPs and BT in the environment, in particular in soil and groundwater. This work summarizes the information available in the literature about the incidence and behavior of these compounds in the different environmental matrices and food. In particular, the review focuses on the physical-chemical properties, the environmental fate, the major degradation byproducts, and the environmental evidence of the selected CECs.
Показать больше [+] Меньше [-]Performance of the CalTOX fate and exposure model in a case study for a dioxin-contaminated site
2015
Åberg, Annika | Macleod, Matthew | Wiberg, Karin
Soil with high levels of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) is found at contaminated sites all over the world. Transfer of PCDD/Fs from contaminated soil to the food chain could lead to elevated human exposure. As a complement to available monitoring data, multimedia fate and exposure modeling can be applied to support risk assessment of sites with PCDD/F contaminated soil. In this study, we evaluated the performance of the CalTOX fate and exposure model for 2,3,7,8-substituted PCDD/Fs against measured concentrations in air, soil, grass, carrots, potatoes, milk, meat, and eggs from a contaminated site in northern Sweden. The calculated total toxic equivalent (TEQ) concentrations agree with measurements within a factor of 10 for all exposure media but one. Results for individual congeners demonstrated that the model did not always perform well at describing key processes that mobilize PCDD/Fs out of soils, such as transfer into root crops and ingestion of soil by chickens. Uncertainty in only a small subset of input parameters affects the model output. Improved information and models describing transfer of soil particles onto leafy vegetation by rain splash and biotransfer factors for PCDD/Fs to milk, meat, and eggs are particular research needs to reduce uncertainties in model-based assessments.
Показать больше [+] Меньше [-]