Уточнить поиск
Результаты 1711-1720 из 7,995
Assessment of the ability of roadside vegetation to remove particulate matter from the urban air Полный текст
2021
Kończak, B. | Cempa, M. | Pierzchała, Ł | Deska, M.
The development of urbanised areas together with the growing transport infrastructure and traffic volume are the main cause of air quality deterioration due to the increasing concentrations of particulate matter. Dust pollution is a threat to human health. It can cause the development of lung, larynx or circulatory system cancer. Due to the ability to accumulate dust particles on the leaf surface, the contribution of trees in the process of phytoremediation of air pollution has started to be appreciated. An analysis of the elemental composition of particulate matter (PM) stored on the leaves surface was also carried out, which showed high average concentration of: C > O > Si > Fe (above 8wt.%). It was also observed single particles with a high concentration of heavy metals: Ti, Mn, Ba, Zn, Cr, Pb, Sn, Ni and REE (rare earth elements). The major origin of PM are vehicular emissions, soil and re-suspended road dust. This paper presents also a comparison of selected tree, shrub and vine species differing in their ability to accumulate particulate matter. It was experimentally determined the average leaf surface of individual plant species and established the amount of particulate matter with aerodynamic diameter between 10 and 100 μm, 2.5 and 10 μm, and 0.2 and 2.5 μm deposited on the leaf surface and in waxes.Some species of vines (Parthenocissus quinquefolia), shrubs (Forsythia x intermediata) and coniferous trees, such as Betula pendula ‘Youngii’, Quercus rubra, Cratageus monogyna, Acer pseduoplatanus, Tilia cordata Mill. or Platanus orientalis turned out to be the most efficient in the process of phylloremediation.
Показать больше [+] Меньше [-]Spatial distribution of particulate matter 2.5 released from surface fuel combustion of Pinus koraiensis – A laboratory simulation study Полный текст
2021
Ning, Jibin | Di, Xueying | Yu, Hongzhou | Yuan, Sibo | Yang, Guang
High concentration particulate matter 2.5 released from forest fires, in addition to direct burns and asphyxia, PM₂.₅ is one of the main pollutants which threaten the safety of forest fire fighter. Therefore, to assess spatial distribution of PM₂.₅, a simulation study was conducted. Fuel beds with different moisture contents and loads were constructed. 144 times burning experiments were carried out under different wind speeds by using wind tunnel device. PM₂.₅ particles at different spatial points were collected and calculated. The results show that, in the two of three variables interaction between wind speed, fuel load, and, except fuel moisture content, wind speed and fuel load are positively correlated with the PM₂.₅ concentrations. From PM₂.₅ concentration which collected at each point in the horizontal and vertical directions, the overall trend is that PM₂.₅ concentration increases along the horizontal downwind direction (C and D higer than A and B) and the vertical upward direction (A and C higer than B and D) Based on BP neural network, the spatial distribution model of PM₂.₅ concentration with single hidden layer was established. The prediction accuracy of modeling samples and validation samples is balanced when hidden layer node is 5. This study will help to make reference for PM₂.₅ occupational exposure standards, forest fire smoke management and forest fire management in China.
Показать больше [+] Меньше [-]Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II) Полный текст
2021
Zhao, Chenhao | Hu, Linlin | Zhang, Changai | Wang, Shengsen | Wang, Xiaozhi | Huo, Zhongyang
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe³⁺ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe³⁺ was soldered on Fe-SA-C matrix as FeO(OH) and Fe₂O₃. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g⁻¹) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2–7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of –OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of –OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Показать больше [+] Меньше [-]Eugenol mitigated acute lung but not spermatic toxicity of C60 fullerene emulsion in mice Полный текст
2021
Pinheiro, Felipe Gomes | Moreira-Gomes, Maria Diana | Machado, Mariana Nascimento | Almeida, Tailane dos Santos | Barboza, Priscila da Penha Apolinário | Silva Oliveira, Luis Felipe | Ávila Cavalcante, Francisco Sales | Leal-Cardoso, José Henrique | Fortunato, Rodrigo Soares | Zin, Walter Araujo
C₆₀ fullerene (C₆₀) is a nano-pollutant that can damage the respiratory system. Eugenol exhibits significant anti-inflammatory and antioxidant properties. We aimed to investigate the time course of C₆₀ emulsion-induced pulmonary and spermatic harms, as well as the effect of eugenol on C₆₀ emulsion toxicity. The first group of mice (protocol 1) received intratracheally C₆₀ emulsion (1.0 mg/kg BW) or vehicle and were tested at 12, 24, 72 and 96 h (F groups) thereafter. The second group of mice (protocol 2) received intratracheally C₆₀ emulsion or vehicle, 1 h later were gavaged with eugenol (150 mg/kg) or vehicle, and experiments were done 24 h after instillation. Lung mechanics, morphology, redox markers, cytokines and epididymal spermatozoa were analyzed. Protocol 1: Tissue damping (G) and elastance (H) were significantly higher in F24 than in others groups, except for H in F72. Morphological and inflammatory parameters were worst at 24 h and subsequently declined until 96 h, whereas redox and spermatic parameters worsened over the whole period. Eugenol eliminated the increase in G, H, cellularity, and cytokines, attenuated oxidative stress induced by C60 exposure, but had no effect on sperm. Hence, exposure to C₆₀ emulsion deteriorated lung morphofunctional, redox and inflammatory characteristics and increased the risk of infertility. Furthermore, eugenol avoided those changes, but did not prevent sperm damage.
Показать больше [+] Меньше [-]Source apportionment of potentially toxic elements in soils of the Yellow River Delta Nature Reserve, China: The application of three receptor models and geostatistical independent simulation Полный текст
2021
Zhang, Mengna | Lv, Jianshu
The Yellow River Delta (YRD) wetland, the most important estuary wetland in eastern China, has an important ecosystem service function. Rapid and intensive development has inevitably led to the accumulation of potentially toxic elements (PTEs) in soils. Therefore, identifying quantitative sources and spatial distributions of PTEs is essential for soil environmental protection in the YRD. A total of 240 topsoil samples (0–20 cm) were collected in the Yellow River Delta Nature Reserve (YRDNR) and analyzed the PTE contents. To avoid the biases of the single receptor model, positive matrix factorization, factor analysis with nonnegative constraints, and maximum likelihood principal component analysis-multivariate curve resolution-alternating least squares were used for source apportionment of soil PTEs. To promote the efficiency of multivariate geostatistical simulation, a minimum/maximum autocorrelation factor-sequential Gaussian simulation was built to map the spatial patterns of PTEs. Three factors were derived by the three receptor models, and their contributions to the source explanation were similar. As, Cr, Cu, Mn, Ni, and Zn originated from natural sources, with contributions of 85.6%–96.4 %. A total of 61.5 % of Hg was associated with atmospheric deposition of coal combustion and wastewater from upstream. Agricultural activities and oil exploitation contributed 33.5 % and 15.9 % of the Cd and Pb concentrations. Spatial distributions of soil PTEs were controlled by sedimentary grain size. A total of 47.2 % of the total study area was identified as hazardous area for Cd, 10.3 % for As, and 5.4 % for Hg. This work is expected to provide references for soil pollution assessment and management of YRDNR.
Показать больше [+] Меньше [-]Effect of flupyradifurone on zebrafish embryonic development Полный текст
2021
Zhong, Keyuan | Meng, Yunlong | Wu, Juan | Wei, You | Huang, Yong | Ma, Jinze | Lu, Huiqiang
Evaluation of the toxicity of pesticide residues on non-target organisms in the ecosystem is an important part of pesticide environmental risk assessment. Flupyradifurone is a new type of butenolide insecticide produced by Bayer, who claims it to be “low toxic” to non-target organisms in the environment. However, there is little evidence in the literature to show how flupyradifurone affects aquatic organism development. In the current study, zebrafish embryos were treated with 0.1, 0.15, and 0.2 mg/mL of flupyradifurone within 6.0–72 h past fertilization (hpf). We found that the half-lethal concentration (LC₅₀) of flupyradifurone for zebrafish embryos at 96 hpf was 0.21 mg/mL. Flupyradifurone decreases the heart rate, survival rate, and body length of zebrafish embryos. The flupyradifurone treatment also led to the failure of heart looping, and pericardial edema. Moreover, flupyradifurone increased the level of reactive oxygen species (ROS) and decreased the enzymatic catalysis of catalase (CAT) and superoxide dismutase (SOD). Alterations were induced in the transcription of apoptosis-related genes (bcl-2, bax, bax/bcl-2, p53 and caspase-9) and the heart development-related genes (gata4, myh6, nkx2.5, nppa, tbx2b, tbx5 and vmhc). In the current study, new evidences have been provided regarding the toxic effects of flupyradifurone and the risk of its residues in agricultural products and the environment.
Показать больше [+] Меньше [-]Source apportionment of atmospheric particle number concentrations with wide size range by nonnegative matrix factorization (NMF) Полный текст
2021
Liang, Chun-Sheng | Yue, Dingli | Wu, Hao | Shi, Jin-Sen | He, Ke-Bin
Quantifying the sources of atmospheric particles is essential to air quality control but remains challenging, especially for the source apportionment of particles based on number concentration with wide size range. Here, particle number concentrations (PNC) with size range 19–20,000 nm involving four modes Nucleation, Aitken, Accumulation, and Coarse are used to do source apportionment of PNC at the Guangdong Atmospheric Supersite (Heshan) during July–October 2015 by nonnegative matrix factorization (NMF) with 6 factors. For July 2015, separated source apportionments for three different size ranges from collocated instruments nano scanning mobility particle sizer (NSMPS), SMPS, and aerodynamic particle sizer (APS) and for two different size ranges (below and above 100 nm) show similar quantitative source information with that for the one whole size range. The mean absolute difference of contribution percentages of total particle number concentrations (TPNC) based on 5 unique apportioned sources is 5.6 % (4.3–7.6 %) for the instrument segregated apportionment and 4.2 % (0–5.3 %) for the size range segregated apportionment respectively, relative to the one whole apportionment. Moreover, the contribution percentages of TPNC are close to the weighted sum of contribution percentages of all size bins, with a mean absolute difference of 1.1 % (0–3.4 %). In both these two aspects, the consistency among different technical paths proves the matrix factorization by NMF is practically desirable and the simplicity of reducing some steps or calculations saves time. Besides, dust can be identified with the wide size range including larger than 3000 nm. Six apportioned sources in the 4 months are Accumulation (32.4 %), Nucleation (20.0 %), Aitken (15.2 %), traffic (14.6 %), dust (10.6 %), and Coarse (7.1 %). Therefore, NMF would serve as a promising tool for PNC source apportionment with wide size range and conducting the apportionment with the whole size range in one matrix factorization procedure and using the single TPNC contribution percentage are feasible.
Показать больше [+] Меньше [-]Variation of the mangrove sediment microbiomes and their phenanthrene biodegradation rates during the dry and wet seasons Полный текст
2021
Tiralerdpanich, Parichaya | Nasaree, Sirawit | Pinyakong, Onruthai | Sonthiphand, Prinpida
Mangrove sediment is a major sink for phenanthrene in natural environments. Consequently, this study investigated the effects of seasonal variation on the biodegradation rates of low (150 mg kg⁻¹), moderate (600 mg kg⁻¹), and high (1200 mg kg⁻¹) phenanthrene-contaminated mangrove sediments using a microcosm study and identified potential key phenanthrene-degrading bacteria using high throughput sequencing of 16 S rRNA gene and quantitative-PCR of the PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes. The biodegradation rates of phenanthrene in all treatments were higher in the wet-season sediments (11.58, 14.51, and 8.94 mg kg⁻¹ sediment day⁻¹) than in the dry-season sediments (3.51, 12.56, and 5.91 mg kg⁻¹ sediment day⁻¹) possibly due to higher nutrient accumulation caused by rainfall and higher diversity of potential phenanthrene-degrading bacteria. The results suggested that the mangrove sediment microbiome significantly clustered according to season. Although Gram-negative phenanthrene-degrading bacteria (i.e., Anaerolineaceae, Marinobacter, and Rhodobacteraceae) played a key role in both dry and wet seasons, distinctly different phenanthrene-degrading bacterial taxa were observed in each season. Halomonas and Porticoccus were potentially responsible for the degradation of phenanthrene in the dry and wet seasons, respectively. The knowledge gained from this study contributes to the development of effective and rationally designed microbiome innovations for oil removal.
Показать больше [+] Меньше [-]A hybrid DNA sequencing approach is needed to properly link genotype to phenotype in multi-drug resistant bacteria Полный текст
2021
Farooq, Adeel | Kim, Jungman | Raza, Shahbaz | Jang, Jeonghwan | Han, Dukki | Sadowsky, M. J. (Michael J.) | Unno, Tatsuya
Antibiotic resistance genes (ARGs) are now viewed as emerging contaminants posing a potential worldwide human health risk. The degree to which ARGs are transferred to other bacteria via mobile genetic elements (MGEs), including insertion sequences (ISs), plasmids, and phages, has a strong association with their likelihood to function as resistance transfer determinants. Consequently, understanding the structure and function of MGEs is paramount to assessing future health risks associated with ARGs in an environment subjected to strong antibiotic pressure. In this study we used whole genome sequencing, done using MinION and HiSeq platforms, to examine antibiotic resistance determinants among four multidrug resistant bacteria isolated from fish farm effluent in Jeju, South Korea. The combined data was used to ascertain the association between ARGs and MGEs. Hybrid assembly using HiSeq and MinION reads revealed the presence of IncFIB(K) and pVPH2 plasmids, whose sizes were verified using pulsed field gel electrophoresis. Twenty four ARGs and 95 MGEs were identified among the 955 coding sequences annotated on these plasmids. More importantly, 22 of 24 ARGs conferring resistance to various antibiotics were found to be located near MGEs, whereas about a half of the ARGs (11 out of 21) were so in chromosomes. Our results also suggest that the total phenotypic resistance exhibited by the isolates was mainly contributed by these putatively mobilizable ARGs. The study gives genomic insights into the origins of putatively mobilizable ARGs in bacteria subjected to selection pressure.
Показать больше [+] Меньше [-]Revealing the modulation of boundary conditions and governing processes on ozone formation over northern China in June 2017 Полный текст
2021
Yan, Feifan | Gao, Yang | Ma, Mingchen | Liu, Cheng | Ji, Xiangguang | Zhao, Fei | Yao, Xiaohong | Gao, Huiwang
In this study, ozonesonde data were used to evaluate the impact of different boundary conditions on the vertical distribution of ozone over urban Beijing. The comparison shows that the clean and static boundary conditions, referred to as PROFILE, apparently underestimate the ozone concentration over the upper troposphere and stratosphere, whereas the global chemical transport model (CTM) provides much more reasonable performance. Further investigation reveals that the boundary conditions exert larger impacts over areas with high altitudes and close distances to boundaries, such as the Tibetan Plateau, while they yield weak impacts on regions relatively far from the boundary, such as the North China Plain (NCP). Process analysis was conducted to investigate the modulation of physical and chemical processes on ozone formation in June 2017, illustrating that during the daytime of the high-O₃ period, the photochemical reactions within the planetary boundary layer (PBL) almost become the only source favorable to ozone accumulation. Motivated by this phenomenon, we constructed a linear regression and found that the maximum daily 8-hr ozone (MDA8) ozone concentration was highly correlated with the surface ozone change rate and chemical reactions in the PBL during the pollution period, with MDA8 ozone exceeding 70 ppbv over NCP. Based on this relationship as well as the design of numerical experiments, we propose a strategy of dynamic emission control. Firstly, the emission reduction during the peak ozone formation period may weaken the fast chemical reactions in the PBL and subsequent surface ozone concentration. Secondly, emission reduction one or two days prior to an episode might achieve larger ozone reduction through the accumulation effect. Lastly, emission control outside of the NCP may surpass the local impact under favorable meteorological conditions. Therefore, the efficacy of dynamic emission control was striking when both the accumulation and transport effect were taken into consideration.
Показать больше [+] Меньше [-]