Уточнить поиск
Результаты 1731-1740 из 1,955
A wintertime study of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a big student residence in Algiers, Algeria Полный текст
2013
Khedidji, Sidali | Ladji, Riad | Yassaa, Noureddine
The wintertime concentrations and diel cycles of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) associated to atmospheric particulate matter with aerodynamic diameter lesser than 10 μm were determined at the biggest student residence in Algeria located in Bab-Ezzouar, 15 km southeast from Algiers city area. Samplings were carried out from December 2009 to March 2010, and organic compounds were characterized using gas chromatography coupled with mass spectrometric detection. Volatile PAHs were also monitored inside some student residence rooms in order to evaluate the impact of indoor air pollution to student health. For the sake of comparison, aerial concentrations of n-alkanes and PAHs were determined in parallel in the Oued Smar industrial zone and two suburban areas, all located in Algiers. Total concentrations recorded in CUB1 student residence ranged from 101 to 204 ng m(-3) for n-alkanes and from 8 to 87 ng m(-3) for PAHs. Diel cycles have shown that, while concentrations of n-alkanes peaked at morning and afternoon-evening and dropped at night, those of PAHs exhibited higher levels at morning and night and lower levels at afternoon-evening, likely due to the reactivity of some PAHs. As expected, the indoor levels of PAHs were larger than in the outdoor of the student residence and were of serious health concern. Overall, the concentrations of n-alkanes and PAHs were as high as those observed in the industrial zone and higher than the two suburban sites.
Показать больше [+] Меньше [-]Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal) Полный текст
2013
Anjum, Naser A. | Aḥmad, Iqbāl | Válega, Mónica | Figueira, Etelvina | Duarte, Armando C. | Pereira, Eduarda
Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal) Полный текст
2013
Anjum, Naser A. | Aḥmad, Iqbāl | Válega, Mónica | Figueira, Etelvina | Duarte, Armando C. | Pereira, Eduarda
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome–leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle.
Показать больше [+] Меньше [-]Phenological development stages variation versus mercury tolerance, accumulation, and allocation in salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in Ria de Aveiro coastal lagoon (Portugal) Полный текст
2013
Anjum, Naser A. | Ahmad, Iqbal | Válega, Mónica | Figueira, Etelvina | Duarte, Armando C. | Pereira, Eduarda
Efficient and sustainable management of rapidly mounting environmental issues has been the focus of current intensive research. The present study aimed to investigate the impact of plant phenological development stage variation on mercury (Hg) tolerance, accumulation, and allocation in two salt marsh macrophytes Triglochin maritima and Scirpus maritimus prevalent in historically Hg-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stands of T. maritima and S. maritimus were collected from reference (R) and sites with moderate (M) and high (H) Hg contamination in Laranjo bay within Ria de Aveiro lagoon. Hg tolerance, uptake, and allocation in T. maritima and S. maritimus, physico-chemical traits (pH, redox potential, and organic matter content) and Hg concentrations in sediments vegetated by these species were impacted differentially by phenological development stages variation irrespective of the Hg contamination level. In T. maritima, Hg concentration increased with increase in Hg contamination gradient where root displayed significantly higher Hg followed by rhizome and leaf maximally at H. However, in S. maritimus, the highest Hg concentration was perceptible in rhizome followed by root maximally at M. Between the two studied plant species, S. maritimus displayed higher Hg tolerance index (depicted by higher plant dry mass allocated to reproductive stage) and higher available Hg at M (during all growth stages) and H (during senescent stage) when compared to T. maritimus. Both plant species proved to be Hg excluder (low root/rhizome-leaf Hg translocation). Additionally, T. maritima also acted as Hg stabilizer while, S. maritimus as Hg accumulator. It can be inferred from the study that (a) the plant phenological development stage variations significantly influenced plant Hg sensitivity by impacting sediment chemistry, plant growth (in terms of plant dry mass), Hg accumulation, and its subsequent allocation capacity, contingent to Hg contamination gradient; (b) S. maritimus accumulated higher Hg but restricted its translocation to above-ground part using exclusion process at both M and H due to its accelerated growth during Hg-tolerant reproductive/metabolically active phenological development stage greater than its counterpart T. maritima; and (c) the studied salt marsh plants although hailed from the same C3 and monocot group did not necessarily display similar phenotypic plasticity and behavior towards Hg-contaminated scenario during their life cycle. | published
Показать больше [+] Меньше [-]Accelerated photo-transformation of 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) in water by dissolved organic matter Полный текст
2013
Chen, Lei | Shen, Chaofeng | Chang, Min-min | Tang, Xianjin | Chen, Yingxu
The ubiquitous dissolved organic matter (DOM) has an important influence on transformation of organic contaminants through the production of reactive substances, such as •OH, ¹O₂, and ³DOM*. The photolysis of a higher chlorinated polychlorinated biphenyl (PCB) congener (2,2′,4,4′,5,5′-hexachlorobiphenyl, PCB 153) under simulated sunlight in presence of humic acid (HA) was investigated. Degradation of PCB 153 was accelerated significantly by the addition of HA, with a rate constant of 0.0214, 0.0413, and 0.0358 h⁻¹ in the initial 18 h of irradiation in presence of 1, 5, and 20 mg/L HA, respectively. The main photodegradation products analyzed by gas chromatography mass spectrometry were 4-hydroxy-2,2′,4′,5,5′-pentaCB and 2,4,5-trichlorobenzoic acid. Main reactive species involved were determined by the electron spin-resonance spectroscopy, including ¹O₂ and •OH. Special scavengers were added to elucidate the photolysis mechanisms. By using the specific scavengers, it turned out that •OH accounted for 29.3 % of the degradation, and the intra-DOM reactive species (¹O₂, •OH, and ³DOM*) accounted for 59.6 % of the degradation. Photo-transformation sensitized by DOM, which involves both aqueous and intra-DOM reactions of PCBs with reactive species, may be one of the most important mechanisms for natural attenuation of PCBs.
Показать больше [+] Меньше [-]Tracer-based source apportionment of polycyclic aromatic hydrocarbons in PM₂.₅ in Guangzhou, southern China, using positive matrix factorization (PMF) Полный текст
2013
Gao, Bo | Guo, Hai | Wang, Xin-Ming | Zhao, Xiu-Ying | Ling, Zhen-Hao | Zhang, Zhou | Liu, Teng-Yu
From 28 November to 23 December 2009, 24-h PM₂.₅ samples were collected simultaneously at six sites in Guangzhou. Concentrations of 18 polycyclic aromatic hydrocarbons (PAHs) together with certain molecular tracers for vehicular emissions (i.e., hopanes and elemental carbon), coal combustion (i.e., picene), and biomass burning (i.e., levoglucosan) were determined. Positive matrix factorization (PMF) receptor model combined with tracer data was applied to explore the source contributions to PAHs. Three sources were identified by both inspecting the dominant tracer(s) in each factor and comparing source profiles derived from PMF with determined profiles in Guangzhou or in the Pearl River Delta region. The three sources identified were vehicular emissions (VE), biomass burning (BB), and coal combustion (CC), accounting for 11 ± 2 %, 31 ± 4 %, and 58 ± 4 % of the total PAHs, respectively. CC replaced VE to become the most important source of PAHs in Guangzhou, reflecting the effective control of VE in recent years. The three sources had different contributions to PAHs with different ring sizes, with higher BB contributions (75 ± 3 %) to four-ring PAHs such as pyrene and higher CC contributions (57 ± 4 %) to six-ring PAHs such as benzo[ghi]perylene. Temporal variations of VE and CC contributions were probably caused by the change of weather conditions, while temporal variations of BB contributions were additionally influenced by the fluctuation of BB emissions. Source contributions also showed some spatial variations, probably due to the source emission variations near the sampling sites.
Показать больше [+] Меньше [-]Alkylphenolic compounds and bisphenol A contamination within a heavily urbanized area: case study of Paris Полный текст
2013
Cladière, Mathieu | Gasperi, Johnny | Lorgeoux, Catherine | Bonhomme, Céline | Rocher, Vincent | Tassin, Bruno
This study evaluates the influence of a heavily urbanized area (Paris Metropolitan area), on receiving water contamination by both bisphenol A (BPA) and alkylphenol ethoxylate (APE) biodegradation product. The study began by investigating concentrations within urban sources. In addition to the more commonly studied wastewater treatment plant effluent, wet weather urban sources (including combined sewer overflows, urban runoff, and total atmospheric fallout) were considered. The initial results highlight a significant contamination of all urban sources (from a few nanograms per liter in atmospheric fallout to several micrograms per liter in the other sources) with clearly distinguishable distribution patterns. Secondly, concentration changes along the Seine River from upstream of the Paris Metropolitan area to downstream were investigated. While the concentrations of BPA and nonylphenoxy acetic acid (NP₁EC) increase substantially due to urban sources, the 4-nonylphenol concentrations remain homogeneous along the Seine. These results suggest a broad dissemination of 4-nonylphenol at the scale of the Seine River basin. Moreover, the relationship between pollutant concentrations and Seine River flow was assessed both upstream and downstream of the Paris conurbation. Consequently, a sharp decrease in dissolved NP₁EC concentrations relative to Seine River flow underscores the influence of single-point urban pollution on Seine River contamination. Conversely, dissolved 4-nonylphenol concentrations serve to reinforce the hypothesis of its widespread presence at the Seine River basin scale.
Показать больше [+] Меньше [-]Terrestrial and aquatic ecotoxicity assessment of Cr(VI) by the ReCiPe method calculation (LCIA): application on an old industrial contaminated site Полный текст
2013
Adam, Véronique | Quaranta, Gaetana | Loyaux-Lawniczak, Stéphanie
The most stable forms of chromium in the environment are chromium (III) and chromium (VI), the former being relatively immobile and necessary for organisms, and the latter being highly soluble and toxic. It is thus important to characterise ecotoxicological impacts of Cr(VI). However, there are still some important uncertainties in the calculation of ecotoxicological impacts of heavy metals in the LCIA global approach. The aim of this paper is to understand how the spatial and dynamic characterization of life cycle inventory (LCI) data can be exploited in life cycle impact assessment and particularly for the evaluation of the aquatic and terrestrial ecotoxicity of Cr(VI). To quantify these impacts, we studied an industrial waste landfill in the North of France that was contaminated with chromium. On the polluted area, the aquatic contamination is due to the slag heap as well as to chromium spots in soil. The soil contamination is mainly due to infiltration of chromium from the infill. The concentration of Cr(VI) in soil and water varies according to seasonal climatic variations and groundwater level. These variations have an effect on the Cr(VI) fate factor, in particular on transfer and residence time of the substance. This study underlines the spatial distribution of aquatic ecotoxicity and the temporal variation of freshwater ecotoxicity. We analysed the correlation between precipitation, temperature, concentration and ecotoxicity impact. With regards to the terrestrial ecotoxicity, the study focused on the vertical variation of the ecotoxicity and the major role of the soil layer composition into terrestrial pollution.
Показать больше [+] Меньше [-]Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches Полный текст
2013
Singh, Kunwar P. | Gupta, Shikha | Ojha, Priyanka | Rai, Premanjali
The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock–Dechert–Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.
Показать больше [+] Меньше [-]Treatment performance and microorganism community structure of integrated vertical-flow constructed wetland plots for domestic wastewater Полный текст
2013
Wu, Su-qing | Chang, Jun-jun | Dai, Yanran | Wu, Zhen-bin | Liang, Wei
In order to investigate the treatment performance and microorganism mechanism of IVCW for domestic wastewater in central of China, two parallel pilot-scale IVCW systems were built to evaluate purification efficiencies, microbial community structure and enzyme activities. The results showed that mean removal efficiencies were 81.03 % for COD, 51.66 % for total nitrogen (TN), 42.50 % for NH₄ ⁺-N, and 68.01 % for TP. Significant positive correlations between nitrate reductase activities and TN and NH₄ ⁺-N removal efficiencies, along with a significant correlation between substrate enzyme activity and operation time, were observed. Redundancy analysis demonstrated gram-negative bacteria were mainly responsible for urease and phosphatase activities, and also played a major role in dehydrogenase and nitrate reductase activities. Meanwhile, anaerobic bacteria, gram-negative bacteria, and saturated FA groups, gram-positive bacteria exhibited good correlations with the removal of COD (p = 0.388), N (p = 0.236), and TP (p = 0.074), respectively. The IVCW system can be used to treat domestic wastewater effectively.
Показать больше [+] Меньше [-]Biodegradation potential of ofloxacin and its resulting transformation products during photolytic and photocatalytic treatment Полный текст
2013
Vasquez, M. I. | Hapeshi, E. | Fatta-Kassinos, D. | Kümmerer, K.
The release of pharmaceuticals in the environment, as parent compounds, metabolites and transformation products, and the consequent risks posed to living organisms due to the unintended exposure of the latter to these chemicals are nowadays of increasing scientific concern. The development of advanced oxidation processes able to degrade these substances is in the core of the current research objectives, the main target being the removal of these compounds from wastewaters. Often the focus is on the removal of the parent compound only. However, these processes can form transformation products. Knowledge on the risk related to such transformation products is scarce. Among others, knowledge on their toxic effects and their biodegradability is of importance not only when they are present in the environment but also for the assessment of the advanced oxidation processes’ efficiency applied for their degradation. Photolytic (UV irradiation) and photocatalytic treatment (UV irradiation in the presence of TiO₂) of the fluoroquinolone ofloxacin were applied, and the biodegradability of the formed products was investigated using the Closed Bottle test (OECD 301 D). Various transformation products, formed both during the photo(cata)lytic treatment and the Closed Bottle test, were identified using chromatographic analysis with an ultra high-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) system. The transformation products formed during the phototreatments were found to be non-readily biodegradable as the biodegradation percentages were close to zero. The persistence of the various photo(cata)lytic transformation products during the Closed Bottle test may be attributed to the fluorine present in all the transformation products formed. The transformation products identified suggest that two transformation routes were present: decarboxylation and opening of the piperazinyl ring. Interestingly, it was observed that in the presence of a readily biodegradable carbon source (sodium acetate), the biodegradation percentage increased drastically for some of the photolytically treated samples. This was not the case for the photocatalytically treated samples, in which also mineralization of the parent compound was achieved faster. Further research is needed, however, in order to increase the understanding of the conditions that may lead to less potent and persistent substances during the application of such engineered or natural processes.
Показать больше [+] Меньше [-]Stability of core/shell quantum dots—role of pH and small organic ligands Полный текст
2013
Domingos, Rute F. | Franco, Cristiana | Pinheiro, José P.
The improvement of knowledge about the toxicity and even processability, and stability of quantum dots (QD) requires the understanding of the relationship between the QD binding head group, surface structure, and interligand interaction. The scanned stripping chronopotentiometry and absence of gradients and Nernstian equilibrium stripping techniques were used to determine the concentration of Cd dissolved from a polyacrylate-stabilized CdTe/CdS QD. The effects of various concentrations of small organic ligands such as citric acid, glycine, and histidine and the roles of pH (4.5-8.5) and exposure time (0-48 h) were evaluated. The highest QD dissolution was obtained at the more acidic pH in absence of the ligands (52 %) a result of the CdS shell solubility. At pH 8.5 the largest PAA ability to complex the dissolved Cd leads to a further QD solubility until the equilibrium is reached (24 % of dissolved Cd vs. 4 % at pH 6.0). The citric acid presence resulted in greater QD dissolution, whereas glycine, an amino acid, acts against QD dissolution. Surprisingly, the presence of histidine, an amino acid with an imidazole functional group, leads to the formation of much strong Cd complexes over time, which may be non-labile, inducing variations in the local environment of the QD surface.
Показать больше [+] Меньше [-]