Уточнить поиск
Результаты 1751-1760 из 62,396
Oxygen demand of taconite tailings [Dissolved oxygen, Lake Superior].
1983
Plumb R.H. Jr. | Lee G.F.
Wisconsin's approach to developing waste load allocations [Fox and Wisconsin rivers, paper mills].
1979
Christianson R.
Process water for papermaking from secondary wastewater effluent.
1979
Giampietri A. | Voysey J.A.
San-Diego-area agencies sign joint-powers pact to study [water] reclamation in practical terms [California].
1977
Elkins B.
Wastewater based epidemiology as a public health resource in low- and middle-income settings Полный текст
2024
Hamilton, Katie A. | Wade, M.J. | Barnes, K.G. | Street, R.A. | Paterson, S.
In the face of emerging and re-emerging diseases, novel and innovative approaches to population scale surveillance are necessary for the early detection and quantification of pathogens. The last decade has seen the rapid development of wastewater and environmental surveillance (WES) to address public health challenges, which has led to establishment of wastewater-based epidemiology (WBE) approaches being deployed to monitor a range of health hazards. WBE exploits the fact that excretions and secretions from urine, and from the gut are discharged in wastewater, particularly sewage, such that sampling sewage systems provides an early warning system for disease outbreaks by providing an early indication of pathogen circulation. While WBE has been mainly used in locations with networked wastewater systems, here we consider its value for less connected populations typical of lower-income settings, and assess the opportunity afforded by pit latrines to sample communities and localities. We propose that where populations struggle to access health and diagnostic facilities, and despite several additional challenges, sampling unconnected wastewater systems remains an important means to monitor the health of large populations in a relatively cost-effective manner.
Показать больше [+] Меньше [-]Ozone, acidic precipitation, and soil Mg impacts on soil and loblolly pine seedling nutrient status after three growing seasons.
1992
Edwards G.S. | Kelly J.M. | Mays P.A.
Acidity status of surface waters in Massachusetts.
1992
Walk M.F.I. | Godfrey P.J. | Ruby A. III | Zajicek O.T. | Mattson M.
Enhancement of anaerobic treatment efficiency through process modification.
1987
Harper S.R. | Pohland F.G.
The role of agricultural sediments and chemicals in eutrophication [Nonpoint-source pollution, surface waters].
1980
Bachmann R.W.
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Полный текст
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Полный текст
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Показать больше [+] Меньше [-]Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area Полный текст
2013
Phong, N. D. | Tuong, T. P. | Phu, N. D. | Nang, N. D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001–2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7–8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1–2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Показать больше [+] Меньше [-]