Уточнить поиск
Результаты 1771-1780 из 6,548
Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river Полный текст
2020
Zhou, Lei | Liu, Li | Chen, Wei-Yuan | Sun, Ji-Jia | Hou, Shi-Wei | Kuang, Tian-Xu | Wang, Wen-Xiong | Huang, Xian-De
Understanding the composition and assembly mechanism of waterborne pathogen is essential for preventing the pathogenic infection and protecting the human health. Here, based on 16S rRNA sequencing, we investigated the composition and spatial variation of potentially pathogenic bacteria from different sections of the Pearl River, the most important source of water for human in Southern China. The results showed that the potential pathogen communities consisted of 6 phyla and 64 genera, covering 11 categories of potential pathogens mainly involving animal parasites or symbionts (AniP), human pathogens all (HumPA), and intracellular parasites (IntCelP). Proteobacteria (75.87%) and Chlamydiae (20.56%) were dominant at the phylum level, and Acinetobacter (35.01%) and Roseomonas (8.24%) were dominant at the genus level. Multivariate analysis showed that the potential pathogenic bacterial community was significantly different among the four sections in the Pearl River. Both physicochemical factors (e.g., NO₃–N, and suspended solids) and land use (e.g., urban land and forest) significantly shaped the pathogen community structure. However, spatial effects contributed more to the variation of pathogen community based on variation partitioning and path analysis. Null model based normalized stochasticity ratio analysis further indicated that the stochastic process rather than deterministic process dominated the assembly mechanisms by controlling the spatial patterns of potential pathogens. In conclusion, high-throughput sequencing shows great potential for monitoring the potential pathogens, and provided more comprehensive information on the potentially pathogenic community. Our study highlighted the importance of considering the influences of dispersal-related processes in future risk assessments for the prevention and control of pathogenic bacteria.
Показать больше [+] Меньше [-]Long-term bisphenol S exposure aggravates non-alcoholic fatty liver by regulating lipid metabolism and inducing endoplasmic reticulum stress response with activation of unfolded protein response in male zebrafish Полный текст
2020
Qin, Jingyu | Ru, Shaoguo | Wang, Weiwei | Hao, Liping | Ru, Yiran | Wang, Jun | Zhang, Xiaona
Environmental chemical exposures have been implicated as risk factors for the development of non-alcoholic fatty liver (NAFLD). Bisphenol S (BPS), widely used in multitudinous consumer products, could disrupt lipid metabolism in the liver. This study aimed at examining the hypothesis that long-term exposure to BPS promotes the development of liver fibrosis and inflammation by means of the application of a semi-static exposure experiment that exposed zebrafish to 1, 10, and 100 μg/L BPS from 3 h post fertilization to 120 day post fertilization. Results showed that the 120-d BPS exposure elevated plasma aspartate aminotransferase and alanine aminotransferase activities, increased triacylglycerol (TAG) and total cholesterol levels in male liver, and even induced hepatic apoptosis and fibrosis. Hepatic lipid accumulation observed in the 30-d BPS-exposed zebrafish was recovered after a 90-d depuration phase, thereby indicating that long-term BPS exposure promotes the progression of simple steatosis to non-alcoholic steatohepatitis. Furthermore, BPS exposure for 120-d promoted the synthesis of TAG and lipotoxic free fatty acids by elevating the transcription of srebp1, acc, fasn, and elovl6, induced endoplasmic reticulum (ER) stress with increasing expression levels of unfolded protein response (UPR) genes (perk, hsp5, atf4a, and ddit3), and then stimulated the expression of two key autophagy genes (atg3 and lc3) and inflammatory genes (il1b and tnfα). It is indicated that BPS can induce the development of steatohepatitis via the activation of the PERK-ATF4a pathway of the UPR. Data gathered suggest that environmental pollutants-induced ER stress with the activation of UPR can potentially trigger the NAFLD development in males. Overall, our study provided new sights into understanding of the adverse health effects of metabolism disrupting chemicals.
Показать больше [+] Меньше [-]A new thermoanalytical method for the quantification of microplastics in industrial wastewater Полный текст
2020
Mallow, Ole | Spacek, Stefan | Schwarzböck, Therese | Fellner, Johann | Rechberger, Helmut
Plastics are crucial for our modern lifestyle and yet pose a major threat to our environment. Rising levels of microplastics (MP) in rivers and oceans are a big challenge for our economy and regulatory institutions as well as from a scientific point of view. Smaller microplastic particles, in particular, are especially hard to identify and even harder to quantify in environmental samples. Hence, we present a novel and inexpensive approach to quantify microplastics (MP) on a weight basis, relying on a thermoanalytical method. The Elemental Analysis combined with Overdetermined Equation Method (EA-OEM) was originally developed for determining the plastic content of refuse-derived fuels. It makes use of the distinct differences in the organic elemental composition (C, H, N, S, O) of plastics, biogenic and inorganic materials to calculate the (micro)plastic content on a detailed weight base. The study presented provides the first experimental results yielded from the application of the EA-OEM and two different laboratory approaches to the analysis of polyethylene (PE) and polypropylene (PP) MP content in industrial effluent samples from one source. In this way, it was possible to ensure that the polymer composition was known and the MP content therein (10–29%) could be derived. Further, the study reveals good MP recovery rates when applying the methodology to PE/PP-spiked samples.
Показать больше [+] Меньше [-]Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China Полный текст
2020
Liu, Xuan | Wang, Hua | Zhao, Huimin
The increasing prevalence and spread of antibiotic resistance genes (ARGs) in intensive aquaculture environments are of great concern to food safety and public health. However, the level of ARGs and their potential propagation factors in an industrial recirculating aquaculture system (RAS) have not previously been comprehensive explored. In this study, the levels of 14 different ARG markers and 2 kinds of mobile genetic elements (MGEs) were investigated in a RAS (including water, fish, feces, pellet feed meal, and biofilm samples) located northern China. qnrA, qnrB, qnrS, qepA, aac(6′)-Ib, and floR were dominant ARGs, which average concentration levels were presented at 4.51–7.74 copies/L and 5.36–13.07 copies/g, respectively, suggesting that ARGs were prevalent in RAS with no recorded history of antibiotic use. Elevated level of ARGs was found in water of RAS even after the final UV treatment compared with its influent. In RAS, Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes were the predominant phyla. Notably, elevated levels of potential opportunistic pathogens were observed along with abundant ARGs suggesting an increasing risk of capturing ARGs and MGEs for human pathogens. This study has revealed for the first time that reared fish, their feces, pellet feed meal as the introduction sources and the selection roles of treatment units co-driven the ARG profile, and the co-selection of water environmental factors and their consequently induced bacterial community shifts formed by their influence are the determining drivers for the ARG propagation in RAS.
Показать больше [+] Меньше [-]Dispersal of cellulose fibers and metals from contaminated sediments of industrial origin in an estuary Полный текст
2020
Apler, Anna | Snowball, Ian | Josefsson, Sarah
The boreal forest’s pulp and paper industry plays a major role in economic prosperity but, historically, caused an environmental burden. Remnants of discharges of contaminated suspended solids (fiberbanks) are continuously being discovered on the beds of shallow seas, rivers and lakes in the northern hemisphere. We investigated the dispersion of Cd, Cr, Cu, Hg, Ni, Pb and Zn from deeper to surficial layers in fiberbanks in a Swedish estuary and the larger-scale transport of the same metals to distal areas of sediment accumulation. We also tested the C:N ratio as a common denominator for these anthropogenic, cellulose-rich deposits. Sampling and analyses of three fiberbanks located in the inner part of the estuary and from sediment accumulation sites outside and along the estuary reveals that metal concentrations are regressing to background levels towards the surface at the accumulation sites. The fiberbanks show a higher degree of contamination and C:N ratios demonstrate inclusion of cellulose fibers. C:N ratios also indicate that there is currently no significant transport of fiberbank material into the distal areas. A ∼10 cm natural cap of recently settled fine-grained sediment covering one of the fiberbanks seems to prevent metals dispersing into overlying water whereas the other two fiberbanks show signs of metal enrichment and potential mercury methylation in surficial layers. Although the estuarine system seems to recover from the impact of industrial waste, there is no evidence that the fiberbanks will be remediated naturally but instead will continue to threaten the aquatic environment.
Показать больше [+] Меньше [-]Occurrence and ecological implications of organophosphate triesters and diester degradation products in wastewater, river water, and tap water Полный текст
2020
Li, Ying | Yao, Chi | Zheng, Qiangxi | Yang, Wen | Niu, Xiangming | Zhang, Yichun | Lü, Guanghua
The occurrence and composition profiles of 13 triester organophosphate flame retardants and their three diester metabolites in river water, wastewater, and tap water in China were studied. Most target organophosphate esters (OPEs) were found in water samples, with average concentrations of 787 ng/L for triethyl phosphate (TEP) and 0.1 ng/L for tripropyl phosphate (TPP) in wastewater, 1.48 × 10³ ng/L for TEP and 0.12 ng/L for tripentyl phosphate (TPeP) in river water, and 15.5 ng/L for tris(2-chloroethyl) phosphate (TCEP) and 0.08 ng/L for tritolyl phosphate (TMPP) in tap water. TEP was the most abundant compound among the detected OPEs in all water types. The exposure of zebrafish embryos showed negligible effects of TEP, triphenyl phosphate (TPHP), and diphenyl phosphate (DPHP), while mixed solutions that mimic river water and wastewater composition disturbed the development of embryos and led to the altered transcription of genes relating to the hypothalamic-pituitary-thyroid (HPT) axis. In addition, the binding affinity between OPEs and a thyroid hormone receptor (TRβ) protein was further investigated by molecular docking modeling, which helped to estimate the effects of OPEs on TRβ. This research provides experimental and theoretical evidence for the ecotoxicological effects of OPEs in aquatic environments.
Показать больше [+] Меньше [-]Public health benefits of optimizing urban industrial land layout - The case of Changsha, China Полный текст
2020
Xu, Wanjun | Zeng, Zhuotong | Xu, Zhengyong | Li, Xiaodong | Chen, Xuwu | Li, Xin | Xiao, Rong | Liang, Jie | Chen, Gaojie | Lin, Anqi | Li, Jinjin | Zeng, Guangming
In China, ambient fine particulate matter (PM₂.₅) causes a large health burden and raises specific concerns for policymakers. However, assessments of the health effects associated with air pollution from industrial land layouts remain inadequate. This study established a comprehensive assessment framework to quantify the health and economic impacts of PM₂.₅ exposure at different industrial geographical locations. This framework aims to optimize the spatial distribution of industrial emissions to achieve the lowest public health costs in Changsha, a representative industrial city in China. Health effects were estimated by applying the integrated exposure-response model and a long-range pollution dispersion model (CALPUFF). The value of statistical life (VSL) was used to monetize health outcomes. It was found that implementing an optimal industrial land layout can yield considerable social and financial benefits. Compared with the current industrial space layout, in 2030, the averted contribution by Changsha’s industrial sector to PM₂.₅-related mortality and corresponding economic losses will be 60.8% and 0.69 billion US dollars (USD), respectively. The results of optimization analyses highlighted that population density and emission location are significant factors affecting the health burden. This method can identify the optimal geographical allocation of industrial land with minimal expected health and economic burden. These results will also provide policymakers with a measurable assessment of health risks related to industrial spatial planning and the associated health costs to enhance the effectiveness of efforts to improve air quality.
Показать больше [+] Меньше [-]Estimating historical [formula omitted] exposures for three decades (1987–2016) in Japan using measurements of associated air pollutants and land use regression Полный текст
2020
Araki, Shin | Shima, Masayuki | Yamamoto, Kouhei
Accurate estimation of historical PM2.5 exposures for epidemiological studies is challenging when extensive monitoring data are limited in duration. Here, we develop a national-scale PM2.5 exposure model for Japan using measurements recorded between 2014 and 2016 to estimate monthly means for 1987 through 2016. Our objective is to obtain accurate PM2.5 estimates for years prior to implementation of extensive PM2.5 monitoring, using observations from a limited period. We utilize a neural network to convey the non-linear relationship between the target pollutant and predictors, while incorporating the associated air pollutants. We obtain high R² values of 0.76 and 0.73 through spatial and temporal cross validation, respectively. We evaluate estimation accuracy using an independent data set and achieve an R² of 0.75. Moreover, monthly variations for 2000–2013 are well reproduced with correlation coefficients of greater than 0.78, obtained through a comparison with observations. We estimate monthly means at 1 × 1 km resolution from 1987 through 2016. The estimates show decreases in the area and population weighted means beginning in the 1990s. We successfully estimate monthly mean PM2.5 concentrations over three decades with outstanding predictive accuracy. Our findings illustrate that the presented approach achieves accurate long-term historical estimations using observations limited in duration.
Показать больше [+] Меньше [-]The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells Полный текст
2020
Xia, Yongpeng | Yang, Xiaobo | Lu, Jingchun | Xie, Qixin | Ye, Anfang | Sun, Wenjun
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Показать больше [+] Меньше [-]Deoxynivalenol induced spermatogenesis disorder by blood-testis barrier disruption associated with testosterone deficiency and inflammation in mice Полный текст
2020
Cao, Zheng | Huang, Wanyue | Sun, Yiran | Li, Yanfei
Deoxynivalenol (DON) is an unavoidable cereal crops contaminants and environmental pollutants, which seriously threated the health of human and animal. DON has been reported to exert significant toxicity effects on spermatogenesis, but the underlying mechanisms remain largely inconclusive. The blood-testis barrier (BTB) provides a specialized biochemical microenvironment for maintaining spermatogenesis. Thus, we hypothesized that DON could impair BTB and lead to spermatogenesis disorder. To confirm this hypothesis, sixty male mice were intragastrically administered with 0, 1.2, 2.4 and 4.8 mg/kg body weight DON for 28 days, and several important observations were obtained in present study. First, we found that DON induced spermatogenesis disorder, reflected by the declines of sperm concentration and quality, sperm ultrastructural damage as well as seminiferous tubular damage. Then, we proved that DON induced BTB disruption as well as decreased the expressions of BTB junction proteins, including Occludin, Connexin 43 and N-cadherin. Finally, the present study showed that DON induced inflammation and inhibited T biosynthesis in testis of mice. These results revealed that DON induced spermatogenesis disorder by BTB disruption associated with testosterone deficiency and inflammation in mice, which shed a new light on the potential mechanisms of reproductive toxicity induced by DON.
Показать больше [+] Меньше [-]