Уточнить поиск
Результаты 1811-1820 из 6,548
Isotopic constraints on the formation pathways and sources of atmospheric nitrate in the Mt. Everest region Полный текст
2020
Wang, Kun | Hattori, Shohei | Kang, Shichang | Lin, Mang | Yoshida, Naohiro
Inorganic particulate nitrate (p-NO3−), gaseous nitric acid (HNO₃₍g₎) and nitrogen oxides (NOₓ = NO + NO₂), as main atmospheric pollutants, have detrimental effects on human health and aquatic/terrestrial ecosystems. Referred to as the ‘Third Pole’ and the ‘Water Tower of Asia’, the Tibetan Plateau (TP) has attracted wide attention on its environmental changes. Here, we evaluated the oxidation processes of atmospheric nitrate as well as traced its potential sources by analyzing the isotopic compositions of nitrate (δ¹⁵N, δ¹⁸O, and Δ¹⁷O) in the aerosols collected from the Mt. Everest region during April to September 2018. Over the entire sampling campaigns, the average of δ¹⁵N(NO3−), δ¹⁸O(NO3−), and Δ¹⁷O(NO3−) was −5.1 ± 2.3‰, 66.7 ± 10.2‰, and 24.1 ± 3.9‰, respectively. The seasonal variation in Δ¹⁷O(NO3−) indicates the relative importance of O₃ and HO₂/RO₂/OH in NOₓ oxidation processes among different seasons. A significant correlation between NO3− and Ca²⁺ and frequent dust storms in the Mt. Everest region indicate that initially, the atmospheric nitrate in this region might have undergone a process of settling; subsequently, it got re-suspended in the dust. Compared with the Δ¹⁷O(NO3−) values in the northern TP, our observed significantly higher values suggest that spatial variations in atmospheric Δ¹⁷O(NO3−) exist within the TP, and this might result from the spatial variations of the atmospheric O₃ levels, especially the stratospheric O₃, over the TP. The observed δ¹⁵N(NO3−) values predicted remarkably low δ¹⁵N values in the NOₓ of the sources and the N isotopic fractionation plays a crucial role in the seasonal changes of δ¹⁵N(NO3−). Combined with the results from the backward trajectory analysis of air mass, we suggest that the vehicle exhausts and agricultural activities in South Asia play a dominant role in determining the nitrate levels in the Mt. Everest region.
Показать больше [+] Меньше [-]Adsorption of chlorophenols on polyethylene terephthalate microplastics from aqueous environments: Kinetics, mechanisms and influencing factors Полный текст
2020
Liu, Zheming | Qin, Qingdong | Hu, Zhixian | Yan, Lu | Ieong, Un-Io | Xu, Yan
Microplastics have received growing attention as carriers of organic pollutants in the water environment. To better understand the contribution of hydrophobic interaction, hydrogen-bonding interaction, π-π interaction and electrostatic interaction on the adsorption of hydrophilic compounds on microplastics and their adsorption behavior in natural waters, polyethylene terephthalate (PET, <150 μm) was used as an adsorbent and 4-chlorophenol (MCP), 2,4-dichlorophenol (DCP) and 2,4,6-trichlorophenol (TCP) were used as adsorbates. The results of batch adsorption experiments showed that chlorophenols (CPs) reached adsorption sites of PET through film diffusion and intra-particle diffusion. pH greatly affected the adsorption capacity. Hydrophobic interaction was the main adsorption mechanism of undissociated CPs on PET. Hydrogen-bonding interaction was also an adsorption mechanism between undissociated CPs and PET, and the contribution of hydrogen-bonding interaction to adsorption decreased with the increase of chlorine content. Meanwhile, the increase of chlorine content was favorable to the hydrophobic interaction between undissociated CPs and PET. However, higher chlorine content CPs with lower pKₐ values tended to dissociate at neutral pH condition and resulted in stronger electrostatic repulsion with PET. The increase of solution ionic strength and fulvic acid content negatively affected the adsorption of DCP and TCP on PET, but did not show significant impacts on MCP adsorption. Similarly, the adsorption capacity obtained using Taihu lake water and Bohai seawater as matrices was much lower than that using laboratory water for both DCP and TCP, while the adsorption coefficient (Kd) of MCP remained at approximately 10.6 L/kg to 11.4 L/kg in the three different solution matrices. The Kd values exhibited using natural water matrices consistently followed the order of DCP > MCP > TCP. This study provides insights into the fate of CPs in the presence of microplastics and suggests that the potential risks posed by CPs and microplastics to aqueous ecosystems merit further investigation.
Показать больше [+] Меньше [-]Throughfall reduction diminished the enhancing effect of N addition on soil N leaching loss in an old, temperate forest Полный текст
2020
Geng, Shicong | Chen, Zhijie | Ma, Shanshan | Feng, Yue | Zhang, Lei | Zhang, Junhui | Han, Shijie
Soil nitrogen (N) leaching is recognized to have negative effects on the environment. There is a lack of studies on different simultaneously occurring drivers of environmental change, including changing rainfall and N deposition, on soil N leaching. In this study, a two factorial field experiment was conducted in a Korean pine forest with the following four treatments: 30% of throughfall reduction (TR), 50 kg N ha⁻¹ yr⁻¹ of N addition (N+), throughfall reduction plus N addition (TRN+) and natural forest (CK). The zero-tension pan lysimeter method was used to assess the response of soil N leaching loss to manipulated N addition and throughfall reduction. The results showed that the soil N leaching loss in natural forest was 5.0 ± 0.4 kg N ha⁻¹yr⁻¹, of which dissolved organic nitrogen (DON) accounted for 48%. Compared to natural forest, six years of N addition (NH₄NO₃, 50 kg N ha⁻¹ year⁻¹) significantly (P < 0.05) increased soil N leaching losses by 122%, especially in the form of NO₃⁻; a 30% reduction in throughfall slightly decreased N leaching losses by 23%; in combination, N addition and throughfall reduction increased N leaching losses by 48%. There was a strong interaction between N addition and throughfall reduction, which decreased N leaching loss by approximately 2.5 kg N ha⁻¹ yr⁻¹. Our results indicated that drought would diminish the enhancing effect of N deposition on soil N leaching. These findings highlight the importance of incorporating both N deposition and precipitation and their impacts on soil N leaching into future N budget assessments of forest ecosystems under global environmental change.
Показать больше [+] Меньше [-]Natural versus anthropogenic sources and seasonal variability of insoluble precipitation residues at Laohugou Glacier in northeastern Tibetan Plateau Полный текст
2020
Wei, Ting | Kang, Shichang | Dong, Zhiwen | Qin, Xiang | Shao, Yaping | Rostami, Masoud
This study employs the grain size distributions and the concentrations and isotopic compositions of Sr, Nd, and Pb in the precipitation samples collected from the Laohugou Glacier (LHG) in northeastern Tibetan Plateau (TP) during August 2014–2015 to investigate seasonal variability in the insoluble precipitation particle sources. Fine dust particle (0.57–27 μm) depositions dominated in autumn and winter, whereas both fine and coarse dust particle (27–100 μm) depositions were found in spring and summer. Furthermore, the concentrations of Sr, Nd, and Pb also varied seasonally—the highest and lowest Sr and Nd concentrations were recorded in spring and autumn, respectively, whereas the highest and lowest Pb concentrations were recorded in winter and summer, respectively. The Sr and Nd isotopes revealed that the dust in the winter precipitation originated predominately from the Taklimakan Desert and that in spring originated from the Badain Jaran and Qaidam deserts. The precipitation residues in summer were derived from a complex mixture of dust sources from the Gobi and other large deserts in northwest China. Autumn residues were predominately sourced from local soil near the LHG as well as from the Qaidam Basin and the northern TP surface soil. The Taklimakan, long suspected as a major source of long-range transported dust, was an insignificant contributor to the precipitation over LHG during spring, summer, and autumn. Further, the Pb isotopic ratios indicated a primary impact of anthropogenic pollutants for most part of the year (except spring). Meteorological data and the MODIS AOD model are in good agreement with the results from the analyses of the Sr, Nd, and Pb isotopes for the LHG particle source, and further clarify the source regions. Thus, this study thus provides new evidence on the seasonal variability of the sources of the residual particles in remote glaciers in Central Asia.
Показать больше [+] Меньше [-]Effects of different roadway deicing salts on host-parasite interactions: The importance of salt type Полный текст
2020
Buss, Nicholas | Nelson, Kiersten N. | Hua, Jessica | Relyea, Rick A.
The application of roadway deicing salts is increasing the salinity of freshwater systems. Increased salinization from salts, such as NaCl, CaCl₂ and MgCl₂, can have direct, negative impacts on freshwater organisms at concentrations found in nature. Yet, our understanding of how these salts can indirectly impact freshwater organisms by altering important ecological interactions, such as those between hosts and their parasites, is limited. Using a larval amphibian and infectious free-living helminth (i.e. trematode) model, we examined whether exposure to environmentally relevant concentrations of NaCl, CaCl₂ and MgCl₂ 1) influence trematode mortality; 2) alter amphibian-trematode interactions; and 3) alter larval amphibian activity (a behavior associated with parasite avoidance). We found that exposure to CaCl₂ greatly reduced trematode survival across all Cl⁻ concentrations (230, 500, 860 and 1000 mg Cl⁻ L⁻¹) while NaCl and MgCl₂ had no effect. When both host and parasites were exposed to the salts, exposure to NaCl, but not MgCl₂ or CaCl₂, increased infection. The lack of effect of CaCl₂ on infection was likely driven by CaCl₂ reducing trematode survival. Exposure to NaCl increased infection at 500 mg Cl⁻ L⁻¹, but not 230 or 860 mg Cl⁻ L⁻¹. Increased infection was not due to salt exposure altering tadpole behavior. Our results suggest that NaCl can negatively impact amphibian populations indirectly by increasing trematode infections in tadpole hosts.
Показать больше [+] Меньше [-]Health risks associated with multiple metal(loid)s in groundwater: A case study at Hetao Plain, northern China Полный текст
2020
Chen, Liuzhu | Ma, Teng | Wang, Yanxin | Zheng, Jiejun
To compare the health risks of multiple metal(loid)s in groundwater, and discuss the feasibility of drinking water standards, 66 groundwater samples were collected from the Hetao Plain in October 2017. Eighteen metal(loid) species (boron (B), manganese (Mn), iron (Fe), strontium (Sr), barium (Ba), lithium (Li), scandium (Sc), titanium (Ti), vanadium (V), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), rubidium (Rb), molybdenum (Mo), uranium (U)) were analyzed, and the related non-carcinogenic risks were assessed. The results showed that 83.3% of the groundwater samples had As and Fe contents above the maximum allowed contaminant levels (MCLs) in drinking water standards, followed by Mn (70.2%), B (65.2%), Se (60.6%), U (18.2%), Ni (18.2%) and Mo (1.50%). Compared with the dermal exposure pathway, oral ingestion made a risk contribution of more than 99% for all target metal(loid)s. Site-specific hazard quotient (HQ) values ranged from 2.30E+00 to 1.75E+02, indicating that multiple metal(loid)s in the drinking groundwater cause a serious non-carcinogenic risk to the local people. The risk contributions (mean value) were ranked as As (55.2%) > U (25.5%) > Li (10.8%) > other total metal(loid)s (8.60%), and the contributions of U and Li could reach 91.7% (site 20) and 69.8% (site 56), respectively. The calculation of specific health risks further indicated that the MCLs of metal(loid)s do not match the corresponding health risk well. Some metal(loid)s such as Li that showed high exposure risks in this study, still have no MCL values until now. Therefore, current drinking water standards need to be updated.
Показать больше [+] Меньше [-]Detoxification of ochratoxin A by Lysobacter sp. CW239 and characteristics of a novel degrading gene carboxypeptidase cp4 Полный текст
2020
Wei, Wei | Qian, Yingying | Wu, Yanbo | Chen, Ying | Peng, Cheng | Luo, Mingzhong | Xu, Junfeng | Zhou, Yu
Ochratoxin A (OTA) is a potent mycotoxin that frequently contaminates agro-products and threatens food safety. A highly efficient OTA degrading strain Lysobacter sp. CW239 was isolated, and the OTA degradation characteristics were investigated. A novel OTA degrading gene carboxypeptidase cp4 was successfully cloned and characterized from CW239. The heterologous recombinant was constructed by gene cp4 and expression vector pET-32a⁽⁺⁾ and overexpressed by E. coli BL21 CodonPlus™ (DE3). The recombinant protein rCP4 was purified, and the OTA-degrading activity was evaluated. Although OTA was efficiently degraded by CW239 (24-h degradation ratio of 86.2%), the 24-h OTA degradation ratio for rCP4 was only 36.8% at fairly high concentration (0.25 mg/mL) protein. The degraded product was obtained by immune affinity column (IAC) and determined by mass spectrometry (MS), and the degraded product was the less toxic ochratoxin α (OTα). Based on the serial investigations of this study, OTA might be simultaneously co-degraded by CP4 and another unknown degrading agent in that degrading strain.
Показать больше [+] Меньше [-]Assessing microbial degradation degree and bioavailability of BDE-153 in natural wetland soils: Implication by compound-specific stable isotope analysis Полный текст
2020
Wang, Guoguang | Liu, Yu | Tao, Wei | Zhao, Xinda | Wang, Haixia | Lou, Yadi | Li, Na | Liu, Yuxin
Microbial degradation is an important pathway for the attenuation of polybrominated diphenyl ethers (PBDEs) in natural soils. In this study, the compound-specific stable isotope analysis (CSIA) was applied to characterize microbial degradation of BDE-153, one of the prevailing and toxic PBDE congeners, in natural wetland soils. During the 45-day incubation, the residual percentages of BDE-153 decreased to 67.9% and 73.6% in non-sterilized soils spiked with 1.0 and 5.0 μg/g, respectively, which were both much lower than those in sterilized soils (96.0% and 97.2%). This result indicated that microbial degradation could accelerate BDE-153 elimination in wetland soils. Meanwhile, the significant carbon isotope fractionation was observed in non-sterilized soils, with δ¹³C of BDE-153 shifting from −29.4‰ to −26.7‰ for 1.0 μg/g and to −27.2‰ for 5.0 μg/g, respectively, whilst not in sterilized soils. This phenomenon indicated microbial degradation could induce stable carbon isotope fractionation of BDE-153. The carbon isotope enrichment factor (εc) for BDE-153 microbial degradation was first determined as −7.58‰, which could be used to assess the microbial degradation and bioavailability of BDE-153 in wetland soils. Based on δ¹³C and εc, the new methods were developed to dynamically and quantitatively estimate degradation degree and bioavailability of BDE-153 during degradation process, respectively, which could exclude interference of physical processes. This work revealed that CSIA was a promising method to investigate in situ microbial degradation of PBDEs in field studies.
Показать больше [+] Меньше [-]Transcriptome analysis in Parhyale hawaiensis reveal sex-specific responses to AgNP and AgCl exposure Полный текст
2020
Artal, Mariana Coletty | Pereira, Karina Danielle | Luchessi, Augusto Ducati | Okura, Vagner Katsumi | Henry, Theodore Burdick | Marques-Souza, Henrique | de Aragão Umbuzeiro, Gisela
Analysis of the transcriptome of organisms exposed to toxicants offers new insights for ecotoxicology, but further research is needed to enhance interpretation of results and effectively incorporate them into useful environmental risk assessments. Factors that must be clarified to improve use of transcriptomics include assessment of the effect of organism sex within the context of toxicant exposure. Amphipods are well recognized as model organisms for toxicity evaluation because of their sensitivity and amenability to laboratory conditions. To investigate whether response to metals in crustaceans differs according to sex we analyzed the amphipod Parhyale hawaiensis after exposure to AgCl and Ag nanoparticles (AgNP) via contaminated food. Gene specific analysis and whole genome transcriptional profile of male and female organisms were performed by both RT-qPCR and RNA-seq. We observed that expression of transcripts of genes glutathione transferase (GST) did not differ among AgCl and AgNP treatments. Significant differences between males and females were observed after exposure to AgCl and AgNP. Males presented twice the number of differentially expressed genes in comparison to females, and more differentially expressed were observed after exposure to AgNP than AgCl treatments in both sexes. The genes that had the greatest change in expression relative to control were those genes related to peptidase and catalytic activity and chitin and carbohydrate metabolic processes. Our study is the first to demonstrate sex specific differences in the transcriptomes of amphipods upon exposure to toxicants and emphasizes the importance of considering gender in ecotoxicology.
Показать больше [+] Меньше [-]An urban polluted river as a significant hotspot for water–atmosphere exchange of CH4 and N2O Полный текст
2020
Wang, Rui | Zhang, Han | Zhang, Wei | Zheng, Xunhua | Butterbach-Bahl, Klaus | Li, Siqi | Han, Shenghui
Polluted urban river systems might be a strong source of atmospheric methane (CH₄) and nitrous oxide (N₂O), but so far only a few urban river systems have been quantified with regard to their source strength for greenhouse gases (GHGs). In this study, we measured loads of dissolved inorganic nitrogen and organic carbon, dissolved oxygen (DO) concentrations, and fluxes of CH₄ and N₂O from an urban river in Beijing, China during the course of an entire year. Fluxes calculated using the floating chamber approach or via the diffusion method with measurements of river water GHG concentrations showed comparable temporal variations. However, the flux magnitude based on the diffusion method was found to strongly depend on the underlying parameterization of the gas transfer velocity. In view of the large differences while applying different methodologies to estimate surface water GHG fluxes further studies are still needed to prove and eventually quantify the systematic errors which are likely caused by either the chamber technique or the approaches of individual diffusion models. For both the floating chamber and the diffusion-based flux estimates, strong seasonal variations in CH₄ and N₂O fluxes from the river surface were observed, with fluxes ranging from 3 to 8374 μg C m⁻² h⁻¹ for CH₄ and 1–3986 μg N m⁻² h⁻¹ for N₂O. The CH₄ fluxes were strongly negatively correlated with the DO concentration (P < 0.01). The highest N₂O fluxes were observed at times with low CH₄ fluxes (i.e., in spring and autumn). Annual CH₄ and N₂O fluxes totaled 19.3–79.4 and 17.4–44.8 kg C (N) ha⁻¹ yr⁻¹, respectively. These high fluxes are in agreement with estimates from the few other studies carried out for urban river systems to date and indicate that urban polluted river systems are a significant regional source of atmospheric GHGs.
Показать больше [+] Меньше [-]