Уточнить поиск
Результаты 191-200 из 7,979
Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Показать больше [+] Меньше [-]Evaluating the fate of hexabromocyclododecanes in the coastal environment: Fugacity analysis using field data
2021
Kim, Yoonsub | Lee, Hwang | Jang, Mi | Hong, Sang Hee | Kwon, Jung-Hwan
Abundant use of plastic materials has increased the amount of microplastics (MPs) and related hazardous chemicals in the marine environment. Hexabromocyclododecanes (HBCDs), brominated flame retardants added to expanded polystyrene (EPS), have been detected in biotic and abiotic samples. In this study, the partition constants of HBCDs between plastics and seawater (KPₛw) were determined. Fugacities of HBCDs in EPS, seawater, sediment, and mussels were obtained to determine the directions of the diffusive flux. The fugacities in EPS (fEPS) were greater than those in seawater (fₛw), sediment (fₛₑd), and mussels (fₛwₘᵤₛₛₑₗ₋EPS and fₘᵤₛₛₑₗ₋ᵣₒcₖ) by three orders of magnitude, indicating that EPS plastics are a significant source of HBCDs. The fₘᵤₛₛₑₗ₋ᵣₒcₖ of α-HBCD in rock mussels was greater than fₛw by factors of 1.7, whereas the fₘᵤₛₛₑₗ₋ᵣₒcₖ of γ-HBCD was smaller than fₛw by factors of 16, indicating the bioisomerization from γ-to α-HBCD. The relatively constant concentration ratio of β-HBCD to the total HBCDs indicated that β-HBCD is a sufficient tracer for determining the diffusive flux. The fₛₑd values of HBCDs were greater than fₛw by factors of 17–28, implying a probable advective vertical flow of HBCDs from the EPS plastics, which requires further investigation.
Показать больше [+] Меньше [-]Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance
2021
Markowicz, Anna | Bondarczuk, Kinga | Cycoń, Mariusz | Sułowicz, Sławomir
The effect of land application of sewage sludge on soil microbial communities and the possible spread of antibiotic- and metal-resistant strains and resistance determinants were evaluated during a 720-day field experiment. Enzyme activities, the number of oligotrophic bacteria, the total number of bacteria (qPCR), functional diversity (BIOLOG) and genetic diversity (DGGE) were established. Antibiotic and metal resistance genes (ARGs, MRGs) were assessed, and the number of cultivable antibiotic- (ampicillin, tetracycline) and heavy metal- (Cd, Zn, Cu, Ni) resistant bacteria were monitored during the experiment. The application of 10 t ha⁻¹ of sewage sludge to soil did not increase the organic matter content and caused only a temporary increase in the number of bacteria, as well as in the functional and structural biodiversity. In contrast to expectations, a general adverse effect on the tested microbial parameters was observed in the fertilized soil. The field experiment revealed a significant reduction in the activities of alkaline and acid phosphatases, urease and nitrification potential. Although sewage sludge was identified as the source of several ARGs and MRGs, these genes were not detected in the fertilized soil. The obtained results indicate that the effect of fertilization based on the recommended dose of sewage sludge was not achieved.
Показать больше [+] Меньше [-]Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China
2021
Li, Weiran | Tong, Shengrui | Cao, Junji | Su, Hang | Zhang, Wenqian | Wang, Lili | Jia, Chenhui | Zhang, Xinran | Wang, Zhen | Chen, Meifang | Ge, Maofa
HONO is an important component of reactive nitrogen (Nᵣ) and precursors of OH radical. However, the source and removal of HONO are not clear. Here, measurements of HONO (May 18–31, 2018) were conducted in Xi'an and Xianyang simultaneously for the first time. The relationship between HONO and other Nᵣ (such as NO and NO₂) in two cities was analyzed. The mixing ratio of HONO in Xi'an was 1.2 ± 0.8 ppbv, and that in Xianyang was 1.2 ± 1.1 ppbv. The nighttime HONO mixing ratio was higher in Xianyang, while the daytime HONO was higher in Xi'an. Compared with the contribution from heterogeneous process of NO₂, direct emissions and homogeneous processes (NO + OH) were less important for nocturnal HONO formation in these two cities. The relative contribution of heterogeneous process in Xianyang was more important than that in Xi'an. The reaction of NO₂ upon aerosols surface was identified as an important source of HONO for two sites. The conversion of NO₂ on the other surfaces might attend the heterogeneous formation of HONO in Xianyang site. Daytime HONO budget analysis indicated that there was an additional unknown formation process of HONO at two sites. The net OH production rate from HONO (from 08:00 to 17:00) was 1.6 × 10⁷ and 1.3 × 10⁷ molecule/(cm³ s) for Xian and Xianyang, 5.2 and 3.5 times higher than from O₃ photolysis. Besides, a dust storm appeared during this observation period, and the impact of local emission and transport processes was separately analyzed. The sources, characteristics, and effects of HONO identified in this study laid a foundation for further research on HONO and air pollution in the Guanzhong area.
Показать больше [+] Меньше [-]Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis
2021
Deng, Rui | Yang, Kun | Lin, Daohui
Discharged carbon nanotubes (CNTs) likely interact with co-existing organic contaminants (OCs) and pose joint toxicity to environmental microbes. Herein, hydrophobic pentachlorophenol (PCP) and hydrophilic ciprofloxacin (CIP) were used as representative OCs and their joint toxicities with CNTs to Bacillus subtilis were systematically investigated at cellular, biochemical, and omics levels. The 3-h bacterial growth half inhibitory concentrations of CNTs, PCP, and CIP were 12.5 ± 2.6, 3.5 ± 0.5, and 0.46 ± 0.03 mg/L, respectively, and they all could damage cell membrane, increase intracellular oxidative stress, and alter bacterial metabolomics and transcriptomics; while CNTs-PCP and CNTs-CIP binary exposures exhibited distinct additive and synergistic toxicities, respectively. CNTs increased bacterial bioaccumulation of PCP and CIP via destabilizing and damaging cell membrane. PCP reduced the bioaccumulation of CNTs, while CIP had no significant effect; this difference could be owing to the different effects of the two OCs on cell-surface hydrophobicity and CNTs electronegativity. The additive toxicity outcome upon CNTs-PCP co-exposure could be a result of the balance between the increased toxicity from increased PCP bioaccumulation and the decreased toxicity from decreased CNTs bioaccumulation. The increased bioaccumulation of CIP contributed to the synergistic toxicity upon CNTs-CIP co-exposure, as confirmed by the increased inhibition of topoisomerase Ⅳ activity and interference in gene expressions regulating ABC transporters and lysine biosynthesis. The findings provide novel insights into environmental risks of CNTs.
Показать больше [+] Меньше [-]Xenopus in revealing developmental toxicity and modeling human diseases
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Показать больше [+] Меньше [-]Intensive vegetable production results in high nitrate accumulation in deep soil profiles in China
2021
Bai, Xinlu | Jiang, Yun | Miao, Hongzhi | Xue, Shaoqi | Chen, Zhujun | Zhou, Jianbin
A comprehensive understanding of the patterns and controlling factors of nitrate accumulation in intensive vegetable production is essential to solve this problem. For the first time, the national patterns and controlling factors of nitrate accumulation in soil of vegetable systems in China were analysed by compiling 1262 observations from 117 published articles. The results revealed that the nitrate accumulation at 0–100 cm, 100–200 cm, 200–300 cm, and >300 cm were 504, 390, 349, and 244 kg N ha⁻¹, with accumulation rates of 62, 54, 19, and 16 kg N ha⁻¹ yr⁻¹ for plastic greenhouse vegetables (PG); for open field vegetables (OF), they were 264, 217, 228, and 242 kg N ha⁻¹ with accumulation rates of 26, 24, 18, and 10 kg N ha⁻¹ yr⁻¹, respectively. Nitrate accumulation at 0–100 cm, 0–200 cm, and 0–400 cm accounted for 5%, 11%, and 17% of accumulated nitrogen (N) inputs for PG, and represented 4%, 9%, and 13% of accumulated N inputs for OF. Nitrogen input rates and soil pH had positive effects and soil organic carbon, water input rate, and carbon to nitrogen ratio (C/N) had negative effects on nitrate accumulation in root zone (0–100 cm soil). Nitrate accumulation in deep vadose zone (>100 cm soil) was positively correlated with N and water input rates, and was negatively correlated with soil organic carbon, C/N, and the clay content. Thus, for a given vegetable soil with relatively stable soil pH and soil clay content, reducing N and water inputs, and increasing soil organic carbon and C/N are effective measures to control nitrate accumulation.
Показать больше [+] Меньше [-]Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning
2021
Pichler, Nikola | Maria de Souza, Fernanda | Ferreira dos Santos, Valdenira | Martins, César C.
The Amazon coastal zone has become contaminated with organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, information about their distribution and sources in this area is scarce, despite increasing deforestation and oil exploitation. Therefore, individual PAHs were analysed in the sediments of the Oyapock estuary, which is located in the Amazon coastal zone. This study provides information about the spatial and short-term temporal distributions of PAHs and discusses the major sources of PAHs to better understand the anthropogenic processes occurring in adjacent areas. The concentrations of all sixteen priority PAHs defined by the US EPA (United States Environmental Protection Agency, ∑₁₆PAHs) ranged from 10.9 to 138.8 ng g⁻¹ with a mean and standard deviation = 37.9 ± 20.5 and indicated that this estuary is not contaminated, while the mean levels were similar to those found in other Amazon regions and pristine areas along the coast of Brazil. No significant differences were found in the sedimentary PAHs levels between the wet and dry sampling campaigns, despite the different climatic conditions. Diagnostic ratios, positive matrix factorization (PMF) and cluster analysis have shown that the majority of the investigated PAHs were derived from combustion processes (at least 55.1%, as estimated by the PMF model). Localized source inputs from oil and its by-products concomitantly with natural/biogenic sources appear to be secondary sources. The PAH contribution from biomass and wood combustion was approximately 13.6% and was relatively lower than other regions of the Amazon that are undergoing massive biomass burning. As the first study of PAHs in this region, this study provides vital information on the healthy state of the estuary and can serve as a baseline for assessing the impacts of acute oil disasters or the chronic input of PAHs as a result of human settlements.
Показать больше [+] Меньше [-]Improvement of alfalfa resistance against Cd stress through rhizobia and arbuscular mycorrhiza fungi co-inoculation in Cd-contaminated soil
2021
Wang, Xia | Fang, Linchuan | Beiyuan, Jingzi | Cui, Yongxing | Peng, Qi | Zhu, Shilei | Wang, Man | Zhang, Xingchang
Rhizobia and arbuscular mycorrhiza fungi (AMF) are important symbiotic microbes that are advantageous to plants growing in metal-contaminated soil. However, it remains unclear how inoculated microbes affect rhizosphere microbial communities or whether subsequent changes in rhizosphere microbiomes contribute to improving plant resistance under metal stress. This study investigated the effects of rhizobia and AMF inoculation on alfalfa resistance to Cd stress. The response of rhizosphere microbial communities to inoculation and its role in increasing alfalfa’ ability to cope with stress were further analyzed using high-throughput sequencing of 16S and ITS rRNA genes. Results showed that single rhizobia or AMF inoculation significantly improved alfalfa resistance to Cd stress, while their co-inoculation resulted in the greatest overall improvement. Improved resistance was reflected by the significant mitigation of Cd-induced lipid peroxidation and reactive oxygen species (ROS) stress caused by increases in antioxidant enzyme activities along with co-inoculation. Furthermore, co-inoculation significantly altered the rhizosphere microbial community structure by decreasing fungal community diversity and increasing bacterial community diversity. Results of partial least squares path modeling (PLS-PM) and variation partitioning analysis (VPA) showed that the rhizosphere bacterial community predominated over the fungal community with respected to improvements in resistance to Cd stress under the co-inoculation treatments. This improvement was specifically seen in the enrichment of certain key bacterial taxa (including Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi) induced by the rhizobia and AMF co-inoculation, enhancing alfalfa’ ability to uptake rhizosphere nutrients and reduce its release of photosynthetically-derived carbon (C) into soil. Our findings revealed that the co-inoculation of multiple symbiotic microbes can assist plants to effectively cope with Cd stress, providing a greater understanding of rhizosphere bacterial taxa in the microbe-induced phytomanagement.
Показать больше [+] Меньше [-]Controlled treatment of a high velocity anisotropic aquifer model contaminated by hexachlorocyclohexanes
2021
Bouzid, Iheb | Maire, Julien | Laurent, Fabien | Broquaire, Mathias | Fatin-Rouge, Nicolas
Xanthan gels were assessed to control the reductive dechlorination of hexachlorocyclohexanes (HCHs) and trichlorobenzenes (TCBs) in a strong permeability contrast and high velocity sedimentary aquifer. An alkaline degradation was selected because of the low cost of NaOH and Ca(OH)₂. The rheology of alkaline xanthan gels and their ability to deliver alkalinity homogeneously, while maintaining the latter, were studied. Whereas the xanthan gels behaved like non-Newtonian shear-thinning fluids, alkalinity and Ca(OH)₂ microparticles had detrimental effects, yet, the latter decreased with the shear-rate. Breakthrough curves for the NaOH and Ca(OH)₂ in xanthan solutions, carried out in the lowest permeability soil (9.9 μm²), demonstrated the excellent transmission of alkalinity, while moderate pressure gradients were applied. Injection velocities ranging from 1.8 to 3.8 m h⁻¹ are anticipated in the field, given the permeability range from 9.9 to 848.7 μm². Despite a permeability contrast of 8.7 in an anisotropic aquifer model, the NaOH and the Ca(OH)₂ both in xanthan gels spread only 5- and 7-times faster in the higher permeability zone, demonstrating that the delivery was enhanced. Moreover, the alkaline gels which were injected into a high permeability layer under lateral water flow, showed a persistent blocking effect and longevity (timescale of weeks), in contrast to the alkaline solution in absence of xanthan. Kinetics of alkaline dechlorination carried out on the historically contaminated soil, using the Ca(OH)₂ suspension in xanthan solution, showed that HCHs were converted in TCBs by dehydrodechlorination, whereas the latter were then degraded by reductive hydrogenolysis. Degradation kinetics were achieved within 30 h for the major and most reactive fraction of HCHs.
Показать больше [+] Меньше [-]