Уточнить поиск
Результаты 2051-2060 из 4,291
Bacterial Degraders of Coexisting Dichloromethane, Benzene, and Toluene, Identified by Stable-Isotope Probing
2017
Yoshikawa, Miho | Zhang, Ming | Kurisu, Futoshi | Toyota, Koki
Most bioremediation studies on volatile organic compounds (VOCs) have focused on a single contaminant or its derived compounds and degraders have been identified under single contaminant conditions. Bioremediation of multiple contaminants remains a challenging issue. To identify a bacterial consortium that degrades multiple VOCs (dichloromethane (DCM), benzene, and toluene), we applied DNA-stable isotope probing. For individual tests, we combined a ¹³C-labeled VOC with other two unlabeled VOCs, and prepared three unlabeled VOCs as a reference. Over 11 days, DNA was periodically extracted from the consortia, and the bacterial community was evaluated by next-generation sequencing of bacterial 16S rRNA gene amplicons. Density gradient fractions of the DNA extracts were amplified by universal bacterial primers for the 16S rRNA gene sequences, and the amplicons were analyzed by terminal restriction fragment length polymorphism (T-RFLP) using restriction enzymes: HhaI and MspI. The T-RFLP fragments were identified by 16S rRNA gene cloning and sequencing. Under all test conditions, the consortia were dominated by Rhodanobacter, Bradyrhizobium/Afipia, Rhizobium, and Hyphomicrobium. DNA derived from Hyphomicrobium and Propioniferax shifted toward heavier fractions under the condition added with ¹³C-DCM and ¹³C-benzene, respectively, compared with the reference, but no shifts were induced by ¹³C-toluene addition. This implies that Hyphomicrobium and Propioniferax were the main DCM and benzene degraders, respectively, under the coexisting condition. The known benzene degrader Pseudomonas sp. was present but not actively involved in the degradation.
Показать больше [+] Меньше [-]Dominant Characteristics Between Microcystis aeruginosa and Cyclotella Sp. Accompanying Dilution Process in Eutrophic Lake
2017
Mikawa, Masahiro | Datta, Tania | Amano, Yoshimasa | Machida, Motoi
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L⁻¹; P = 0.1 or 0.5 mg-P L⁻¹) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L⁻¹) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L⁻¹). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day⁻¹ or higher regardless of the N:P ratios. Graphical Abstract • M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. • The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. • The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L⁻¹ when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L⁻¹).
Показать больше [+] Меньше [-]Evaluating impacts of recharging partially treated wastewater on groundwater aquifer in semi-arid region by integration of monitoring program and GIS technique
2017
Alslaibi, Tamer M. | Kishawi, Yasser | Abunada, Ziyad
The current study investigates the impact of recharging of partially treated wastewater through an infiltration basin on the groundwater aquifer quality parameters. A monitoring program supported by a geographic information analysis (GIS) tool was used to conduct this study. Groundwater samples from the entire surrounding boreholes located downstream the infiltration basin, in addition to samples from the recharged wastewater coming from the Beit Lahia wastewater treatment (BLWWTP), were monitored and analysed between 2011 and 2014. The analysis was then compared with the available historical data since 2008. Results revealed a groundwater replenishment with the groundwater level increased by 1.0–2.0 m during the study period. It also showed a slight improvement in the groundwater quality parameters, mainly a decrease in TDS, Cl⁻ and NO₃ ⁻ levels by 5.5, 17.1 and 20%, respectively, resulting from the relatively better quality of the recharged wastewater. Nevertheless, the level of boron and ammonium in the groundwater wells showed a significant increase over time by 96 and 100%, respectively. Moreover, the infiltration rate was slowed down in time due to the relatively high level of total suspended solid (TSS) in the infiltrated wastewater.
Показать больше [+] Меньше [-]Adsorption of Dioxin by Bag Filter + Powdered Activated Carbon
2017
Cui, Yu-Yong | Yang, Guo-Hua | Xiao, Gui-Hui | Zhou, Jiang-Hua | Ding, Guo-Zhu | Pan, Xue-Jun
A novel bag filter + powdered activated carbon technique is here proposed to address the low utilization rate of powdered activated carbon and the low dioxin removal rate associated with the conventional activated carbon injection + bag filter technique, better known as the fly ash + activated carbon + bag technique. In this method, dibenzofuran serves as a dioxin simulant. The effect of the adsorption temperature and dibenzofuran inlet concentration on the adsorption performance of activated carbon was studied using a filter cloth adsorption device with an inner diameter of 25 mm, and the adsorption performances of fly ash, activated carbon, and fly ash +5% activated carbon were compared. The results showed that activated carbon exhibited a higher adsorption efficiency and remained highly efficient longer than fly ash +5% activated carbon. When the dibenzofuran inlet concentration was 0.0956 g/m³ (about one million times the concentration of dioxin in the flue gas of incinerated waste), the duration of the high-efficiency (>90%) adsorption of the powdered activated carbon (thickness 1.2 mm) on the filter cloth was over 7 h. These results prove that the replacement of fly ash + activated carbon + filter bag with powdered activated carbon + bag filter can significantly improve the removal efficiency of the dioxin in waste incineration flue gas and the utilization rate of activated carbon.
Показать больше [+] Меньше [-]Immobilization of Cu by Bacillus subtilis DBM and the Role of Extracellular Polymeric Substances
2017
Bai, Jun | Chao, Yuanqing | Chen, Yanmei | Wang, Shizhong | Qiu, Rongliang
The mechanisms involved in immobilization of soil Cu and the role of extracellular polymeric substances (EPS) in Cu(II) adsorption by Bacillus subtilis DBM were investigated in this study. Adsorption and desorption experiments with intact DBM cells revealed that complexation with surface functional groups and intracellular accumulation were involved in the immobilization of soil Cu. The removal of EPS using cation exchange resin resulted in a 26.6% decrease in the Cu(II) adsorption capacity relative to untreated cells. Compared to intact cells, EPS-free cells showed a 9.9% decrease in the proportion of complexed Cu(II), while the intracellular fraction increased by 8.0%. Surface complexation modeling indicated that the total concentration of complexation sites on the intact DBM cell surface was 1.11 mmol/g dry biomass, which was decreased by 17% to 0.92 mmol/g after EPS removal. Infrared analysis revealed that the pKa values of the carboxyl and phosphate groups in the DBM cell wall differed from those in the EPS. Carboxyl, carbonyl, hydroxyl, amino, and phosphate groups were involved in binding Cu(II) by both intact and EPS-free cells, and Cu(II) was more likely to combine with organic rather than inorganic phosphates. The presence of the EPS increased the binding potential of surface functional groups and may help to prevent heavy metals from entering the cells.
Показать больше [+] Меньше [-]Physiological Effects and Fluorescence Labeling of Magnetic Iron Oxide Nanoparticles on Citrus (Citrus reticulata) Seedlings
2017
Li, Junli | Hu, Jing | Xiao, Lian | Gan, Qiuliang | Wang, Yunqiang
Nanoparticles (NPs) have been reported to cause physiological effects on plant cells and tissue. This study traced the uptake and distribution of magnetic iron oxide nanoparticles (γ-Fe₂O₃ NPs) in citrus (Citrus reticulata) plants under hydroponic condition by fluorescent dye labeled γ-Fe₂O₃ NPs, and described a detailed evidence of physiological effects of 0–100 mg/L γ-Fe₂O₃ NPs on citrus plants by measuring the physiological parameters such as content of chlorophyll, malondialdehyde (MDA), soluble sugar, soluble protein, activity of antioxidant enzyme, and ferric reductase after 21 days exposure. Fluorescence images of citrus stem and root showed that citrus roots could absorb γ-Fe₂O₃ NPs but no translocation from roots to shoots was observed, since NPs aggregated or even clogged the vascular system. Physiological results showed that 20 mg/L γ-Fe₂O₃ NPs could significantly enhance chlorophyll content by 126.4%, while 50 and 100 mg/L of γ-Fe₂O₃ NPs decreased chlorophyll content by 27.8 and 35.4%, respectively. MDA contents in citrus leaves under 20–100 mg/L γ-Fe₂O₃ NPs exposure were increased by 37.8, 107.2, and 61.5%, respectively, while that in roots were decreased by 27.0,11.9, and 7.4%, respectively, with elevated SOD and CAT activity, suggesting that oxidative stress occurred in citrus leaves, but oxidative stress in roots was eliminated by antioxidant defense. It is noteworthy that although Fe(II)-EDTA treatment had a high level of chlorophyll content, it induced strong oxidative stress in citrus plants as well. Collectively, the various physiological responses of citrus plants to γ-Fe₂O₃ NPs exposure were closely correlated with the concentrations of NPs. γ-Fe₂O₃ NPs at proper concentrations, such as 20 mg/L, have the potential to ameliorate chlorosis of plants and be effective nanofertilizers for increasing agronomic productivity.
Показать больше [+] Меньше [-]Individual and Combined Effects of Petroleum Hydrocarbons Phenanthrene and Dibenzothiophene on Reproductive Behavior in the Amphipod Hyalella azteca
2017
Satbhai, Kruuttika M. | Louka, Febee R. | Klerks, Paul L.
Predicting impacts of oil spills on the environment requires a better understanding of the effects on aquatic organisms, both for single hydrocarbons and for their interactions. In this study, the individual and combined effects of the petroleum hydrocarbons phenanthrene and dibenzothiophene (DBT) were assessed on the reproductive behavior of the freshwater amphipod Hyalella azteca. Following a 24-h exposure to single polycyclic aromatic hydrocarbons (PAHs), or an equimolar mixture of phenanthrene–dibenzothiophene (Phen–DBT), mate-guarding behavior was assessed. This consisted of an assessment of the incidence of mate guarding right at the end of the exposure period and quantification of the “time taken to initiate mate guarding” (TIMG) and “proportion of time spent mate guarding” (PTMG) during a subsequent 10-min observation period in clean water. Both Phen and DBT reduced the incidence of mate guarding at the end of the exposure. TIMG and PTMG during the observation period were not affected by the PAHs other than indirectly by their effect on mate guarding status at the end of the exposure. The interaction between Phen and DBT varied among the mate guarding measures. For mate guarding status at the end of the exposure period and for TIMG, the interaction did not deviate statistically from an additive effect. For PTMG, the overall interaction was a synergistic one. This study’s findings point out that assessments of hydrocarbon toxicity need to take into account that subtle reproductive behaviors (that may be important for population persistence) may be negatively affected. The results also show that the general assumption of additive effects among PAHs may be an oversimplification.
Показать больше [+] Меньше [-]Tolerance and Removal Mechanisms of Heavy Metals by Fungus Pleurotus ostreatus HAAS
2017
Yang, Suqin | Sun, Xiaoxue | Shen, Yanping | Zhang, Zheng | Guo, Erhui | La, Guixiao | Zhao, Yong | Li, Xuanzhen
Fungus Pleurotus ostreatus HAAS can tolerate and remove heavy metals from water. Among three heavy metals tested, the removal of Pb was the most efficient (99.9–100.0%), followed by Cd (45.9–61.1%), and Cr (29.4–64.5%). The uptake of heavy metals by the fungus varied and was dependent on the element. Pb was found to be transported primarily into the fungal cell wall (68.2–91.2% of the total), which was much higher than the insoluble form (20.1–32.7%), and the maximum intracellular concentration of Pb was found to be 119,830.4 mg kg⁻¹. In the cases of Cd and Cr, their insoluble forms were the main products of the reaction with the fungus, which accounted for 30.0–39.1 and 19.6–37.4% of the total. P. ostreatus HAAS produces oxalic acid, and this production is stimulated by Pb and Cr but inhibited by Cd. Parallel experimental results indicated that the concentration of the soluble metals in solution decreased with the increase of oxalic acid, which further suggested that oxalic acid played a partial role in the removal of the soluble heavy metals by chelation. These results revealed that this species of fungus has a variety of response mechanisms to the presence of heavy metals in solution.
Показать больше [+] Меньше [-]Recovery of Ammonium by Powder Synthetic Zeolites from Wastewater Effluents: Optimization of the Regeneration Step
2017
You, Xialei | Valderrama, César | Querol, X. (Xavier) | Cortina, JoséLuis
Nitrogen recovery and valorization is gaining interest due to the current need for nitrogen removal, so it is of great interest that ammonium-selective sorbents be evaluated. In this study, a zeolitic material synthesized from coal fly ash (Ze–Na) in sodium form as well as its modification to potassium form (Ze–K) were evaluated as sorbent materials for the recovery of ammonium from wastewater effluents. The sorption performance was assessed through three consecutive sorption-desorption cycles reporting opposite behavior in terms of ammonium sorption capacity. Decreasing in the case of Ze–Na and to slightly increase for Ze–K due to alkaline activation of zeolite surface. The maximum sorption capacities obtained were 109 ± 4 mg NH₄/g and 33 ± 1 mg NH₄/g for Ze–Na and Ze–K, respectively. It is important to point out that in the case of Ze–Na, the maximum sorbent capacity was obtained during the first sorption cycle whereas in the case of Ze–K, it was obtained during the last working cycle due to the alkaline regeneration. Kinetic studies showed that after every regeneration step, the sorption kinetics turn faster as alkaline desorption increased the zeolite-specific surface, thus increasing the size of porous and enhancing the diffusion through the particle. Results obtained indicate that sorption capacity decreased significantly after every working cycle using Ze–Na whereas Ze–K followed the opposite behavior despite its initial lower sorption capacity.
Показать больше [+] Меньше [-]Earthworm (Eisenia fetida) Eco-physiological Characteristics in Vermifiltration System for Wastewater Treatment Through Analyzing Differential Proteins
2017
Wang, Yin | Xing, Meiyan | Yang, Jian
A vermifilter (with earthworms, VF), with a conventional biofilter (no earthworms, BF) as a control, was established to examine the survival state and adaptability of earthworms in protein perspective. The VF behaved with a significantly higher organic matter decomposition and lower sludge yield due to the presence of earthworms. However, during the steady stage (12 months), the earthworm biomass decreased slightly from 32.0 to 24.2 g/L, while the earthworm average weight increased, indicating that the earthworm suffered some adverse effects from the VF. Notably, from the perspective of the earthworm protein, the earthworms showed a higher Shannon-Weaver index (from H = 2.76 to 3.06) than the BF and up-regulated some proteins to cope with the negative effects from the VF. These up-regulated differential proteins played a variety of crucial roles in many cellular processes. The results suggested that a more specialized and stable protein expression of earthworms was developed in the VF, reflecting the adaptabilities of the earthworms in the VF.
Показать больше [+] Меньше [-]