Уточнить поиск
Результаты 221-230 из 4,921
Sampling optimization for biomonitoring metal contamination with marine macroalgae
2019
García-Seoane, R. | Fernández, J.A. | Varela, Z. | Real, C. | Boquete, M.T. | Aboal, J.R.
The aim of the present study was to optimize the protocol for sampling marine macroalgae to be used to biomonitor heavy metal contamination in marine ecosystems. For this purpose, we collected 50 subsamples of the brown seaweed Fucus vesiculosus at random in each of three sampling sites (SS) and determined the concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Hg, N, Ni, Pb, Zn and δ15N. We used semivariograms to explore the possible existence of spatial structure in the concentrations of the elements. Spatial structure was observed in 88% of the semivariograms studied, with element concentrations varying longitudinally and transversally along the SS. Using randomization techniques, we estimated that in each SS, a minimum of 30 evenly distributed subsamples should be collected within three bands parallel to the coastline (and also at different heights on the rocks if necessary), and analyzed in a single composite sample representative of the intra-SS variability.
Показать больше [+] Меньше [-]Immobilization of mercury using high-phosphate culture-modified microalgae
2019
Huang, Rong | Huo, Guangcheng | Song, Shaoxian | Li, Yinta | Xia, Ling | Gaillard, Jean-Francois
This study developed a novel Hg(II) immobilization strategy by firstly incubating algal cells in high-phosphate cultures for surface modification, followed by obtaining the P-rich biomass as adsorbents for enhanced Hg(II) removal and then charring the Hg-loaded biomass to prevent leaching of phosphate and to immobilize Hg(II). For algal surface modification, Scenedesmus obtusus XJ-15 were cultivated under different P concentrations and obtained the highest sites concentration of surface phosphoryl functional groups in 80 mg L⁻¹ P cultures. For Hg(II) adsorption, biomass from 80 mg L⁻¹ P cultures (B-80) achieved the highest saturated sorption capacity of 95 mg g⁻¹ fitting to Langmuir isotherm model under the optimum pH of 5.0. For charring stabilization, the Hg-loaded B-80 was calcinated under different temperatures, and the product obtained from 300 °C charring showed the lowest Hg(II) leaching rate without P release. Moreover, FT-IR and XPS analysis indicate that the surge of surface phosphoryl functional groups dominated the enhancement of Hg(II) sorption and also Hg(II) charring immobilization. The above results suggested that the developed strategy is promising for both phosphate and mercury removal from water and for co-immobilization of P and Hg(II) to prevent leaching.
Показать больше [+] Меньше [-]The potential of microplastics as carriers of metals
2019
Godoy, V. | Blázquez, G. | Calero, M. | Quesada, L. | Martín-Lara, M.A.
Microplastics can adsorb chemical pollutants such as metals or pharmaceuticals, and transferred them along the food chain. In this work, an investigation of the adsorption of Cd, Co, Cr, Cu, Ni, Pb and Zn by five different types of microplastics was performed in Milli-Q water and natural waters (seawater, urban wastewater and irrigation water) via a series of batch adsorption experiments. The effects of concentration of metals and physicochemical characteristics of polymers were particularly studied. Results revealed a significant adsorption of lead, chromium and zinc on microplastics, especially on polyethylene and polyvinyl chloride. In the case of polyethylene terephthalate, it showed little adsorption capacity. Specific surface, porosity and morphology are characteristics that affect the molecular interactions. The adsorption isotherms were better described by Langmuir model, which indicates that the main adsorption mechanism might be chemical adsorption. Finally, results obtained in natural waters indicated that dissolved organic matter may play a major role on metal adsorption on microplastics. Results showed an enhancement of metal adsorption in waters with high chemical and biological oxygen demands as urban wastewater and irrigation water.
Показать больше [+] Меньше [-]Reduction of industrial iron pollution promotes phosphorus internal loading in eutrophic Hamilton Harbour, Lake Ontario, Canada
2019
Markovic, Stefan | Liang, Anqi | Watson, Sue B. | Depew, David | Zastepa, Arthur | Surana, Preksha | Byllaardt, Julie Vanden | Arhonditsis, George | Dittrich, Maria
Diagenetic sediment phosphorus (P) recycling is a widespread phenomenon, which causes degradation of water quality and promotes harmful algal blooms in lakes worldwide. Strong P coupling with iron (Fe) in some lakes is thought to inhibit diagenetic P efflux, despite elevated P concentrations in the sediment. In these sediments, the high Fe content leads to P scavenging on ferric Fe near the sediment surface, which increases the overall P retention. Reduced external Fe inputs in such lakes due to industrial pollution control may lead to unintended consequences for sediment P retention. Here, we study sediment geochemistry and sediment-water interactions in the historically polluted Hamilton Harbour (Lake Ontario, Canada) which has undergone 30 years of restoration efforts. We investigate processes controlling diagenetic P recycling, which has previously been considered minor due to historically high Fe loading. Our results demonstrate that present sediment P release is substantial, despite sediment Fe content reaching 6.5% (dry weight). We conclude that the recent improvement of wastewater treatment and industrial waste management practices has reduced Fe pollution, causing a decrease in diagenetically reactive Fe phases, resulting in the reduction of the ratio of redox-sensitive P and Fe, and the suppression of P scavenging on Fe oxyhydroxides.
Показать больше [+] Меньше [-]Chemical characterization and source apportionment of PM2.5 personal exposure of two cohorts living in urban and suburban Beijing
2019
Shang, Jing | Khuzestani, Reza Bashiri | Tian, Jingyu | Schauer, James J. | Hua, Jinxi | Zhang, Yang | Cai, Tianqi | Fang, Dongqing | An, Jianxiong | Zhang, Yuanxun
In the study, personal PM₂.₅ exposures and their source contributions were characterized for 159 subjects living in the Beijing Metropolitan area. The exposures and sources were examined as functions of residential location, season, vocation, cigarette smoking, and time spent outdoors. Sampling was performed for two categories of volunteers, guards and students, that lived in urban and suburban areas of Beijing. Samples were collected using portable PM₂.₅ monitors during summer and winter. Exposure measurements were supplemented with a questionnaire that tracked personal activity and time spent in microenvironments that may have impacted exposures. Simultaneously, ambient PM₂.₅ data were obtained from national network stations located at the Gucheng and Huairouzhen sites. These data were used as a comparison against the personal PM₂.₅ exposures and produced poor correlations between personal and ambient PM₂.₅. These results demonstrate that individual behavior strongly affects personal PM₂.₅ exposure. Six primary sources of personal PM₂.₅ exposure were determined using a positive matrix factorization (PMF) source apportionment model. These sources included Roadway Transport Source, Soil/Dust Source, Industrial/Combustion Source, Secondary Inorganic Source, Cd Source, and Household Heating Source. Averaged across all subjects and seasons, the highest source contribution was Secondary Inorganic Source (24.8% ± 32.6%, AVG ± STD), whereas the largest primary ambient source was determined to be Roadway Transport (20.9% ± 13.6%). Subjects were classified according to the questionnaire and were used to help understand the relationship between personal activity and source contribution to PM₂.₅ exposure. In general, primary ambient sources showed only significant spatial and seasonal differences, while secondary sources differed significantly between populations with different personal behavior. In particular, Cd source was found to be related to smoking exposure and was the most unpredictable source, with significant differences between populations of different sites, vocations, smoking exposures, and outdoor time.
Показать больше [+] Меньше [-]Responses of forest ecosystems in Europe to decreasing nitrogen deposition
2019
Schmitz, Andreas | Sanders, Tanja G.M. | Bölte, Andreas | Bussotti, Filippo | Dirnböck, Thomas | Johnson, Jim | Peñuelas, Josep | Pollastrini, Martina | Prescher, Anne-Katrin | Sardans, Jordi | Verstraeten, Arne | de Vries, Wim
Average nitrogen (N) deposition across Europe has declined since the 1990s. This resulted in decreased N inputs to forest ecosystems especially in Central and Western Europe where deposition levels are highest. While the impact of atmospheric N deposition on forests has been receiving much attention for decades, ecosystem responses to the decline in N inputs received less attention. Here, we review observational studies reporting on trends in a number of indicators: soil acidification and eutrophication, understory vegetation, tree nutrition (foliar element concentrations) as well as tree vitality and growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited decrease in soil solution nitrate concentrations and potentially also foliar N concentrations. There was no large-scale response in understory vegetation, tree growth, or vitality. Experimental studies support the observation of a more distinct reaction of soil solution and foliar element concentrations to changes in N supply compared to the three other parameters. According to the most likely scenarios, further decrease of N deposition will be limited. We hypothesize that this expected decline will not cause major responses of the parameters analysed in this study. Instead, future changes might be more strongly controlled by the development of N pools accumulated within forest soils, affected by climate change and forest management.
Показать больше [+] Меньше [-]Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China
2019
Tian, Mi | Liu, Yuan | Yang, Fumo | Zhang, Leiming | Peng, Chao | Chen, Yang | Shi, Guangming | Wang, Huanbo | Luo, Bin | Jiang, Changtan | Li, Bo | Takeda, Naoki | Koizumi, Kazuhiro
Secondary inorganic aerosols, including sulfate, nitrate, and ammonium contribute to a large extent to the severe haze pollution events in China. Understanding their formation mechanisms is critical for designing effective mitigation strategies to control haze pollution, especially as the role of nitrate seemed to become more important recently, especially in some megacities. In the present study, simultaneous observations were conducted in two megacities (Chengdu and Chongqing) in Sichuan Basin of southwest China, one of the regions suffering from severe aerosol pollution. One typical long-lasting pollution event in Chengdu and Chongqing was captured during wintertime from December 25, 2016 to January 5, 2017. The campaign-average of hourly concentrations of PM2.5, sulfate, and nitrate, measured by an Aerosol Analyzer (ZSF) were 101 ± 73.8 μg/m3, 15.9 ± 11.8 μg/m3, and 24.9 ± 20.6 μg/m3, respectively, in Chengdu, and were 87.7 ± 53.8 μg/m3, 19.7 ± 13.5 μg/m3, and 15.1 ± 10.1 μg/m3, respectively, in Chongqing. Nitrate contributed substantially to PM2.5 pollution when PM2.5 was lower than 150 μg/m3, largely due to the strong secondary transformation of NOX to nitrate during the occurrence of the pollution episode. Heterogeneous hydrolysis of N2O5 dominated nitrate formation during nighttime, while photochemical reactions and high-RH enhanced gas- to aqueous-phase dissolution of NH3 and HNO3 or cloud processes likely played important roles for nitrate formation during daytime. RH-dependent heterogeneous reactions contributed greatly to the formation of sulfate. NOX is confirmed to play an important role as an oxidant in accelerating the secondary transformation of SO2 to sulfate at high RH and low O3 levels under neutralization condition during heavy PM2.5 pollution episode. Results from this study identified the formation mechanism of nitrate, especially during the daytime, and addressed the importance of heterogeneous inorganic reactions in the formation of heavy aerosol pollution events.
Показать больше [+] Меньше [-]Using artificial neural network to investigate physiological changes and cerium oxide nanoparticles and cadmium uptake by Brassica napus plants
2019
Rossi, Lorenzo | Bagheri, Majid | Zhang, Weilan | Chen, Zehua | Burken, Joel G. | Ma, Xingmao
Heavy metals and emerging engineered nanoparticles (ENPs) are two current environmental concerns that have attracted considerable attention. Cerium oxide nanoparticles (CeO₂NPs) are now used in a plethora of industrial products, while cadmium (Cd) is a great environmental concern because of its toxicity to animals and humans. Up to now, the interactions between heavy metals, nanoparticles and plants have not been extensively studied. The main objectives of this study were (i) to determine the synergistic effects of Cd and CeO₂NPs on the physiological parameters of Brassica and their accumulation in plant tissues and (ii) to explore the underlying physiological/phenotypical effects that drive these specific changes in plant accumulation using Artificial Neural Network (ANN) as an alternative methodology to modeling and simulating plant uptake of Ce and Cd. The combinations of three cadmium levels (0 [control] and 0.25 and 1 mg/kg of dry soil) and two CeO₂NPs concentrations (0 [control] and 500 mg/kg of dry soil) were investigated. The results showed high interactions of co-existing CeO₂NPs and Cd on plant uptake of these metal elements and their interactive effects on plant physiology. ANN also identified key physiological factors affecting plant uptake of co-occurring Cd and CeO₂NPs. Specifically, the results showed that root fresh weight and the net photosynthesis rate are parameters governing Ce uptake in plant leaves and roots while root fresh weight and Fᵥ/Fₘ ratio are parameters affecting Cd uptake in leaves and roots. Overall, ANN is a capable approach to model plant uptake of co-occurring CeO₂NPs and Cd.
Показать больше [+] Меньше [-]Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies
2019
Nawanīta Kaura, | Manpreet Kaur, | Singh, Dhanwinder
Mesoporous nanocomposite of MgFe₂O₄ nanoparticles (NPs) and graphene oxide (GO) was synthesized using facile sonication method. Its potential was tested for the removal of Ni (II) and Pb (II) ions from water. The 2:1 w/w ratio of MgFe₂O₄:GO was optimum for the maximum removal of metal ions. Nanocomposite was characterized employing XRD, FT-IR, VSM, SEM-EDX, XPS, TEM and BET analyses. It possessed higher surface area (63.0 m² g⁻¹) than pristine NPs. Batch experiments were performed to study the effect of process parameters viz. pH, dose, contact time, initial metal ion concentration, co-existing ions and temperature. Statistical parameters were also determined. Langmuir, Temkin and Freundlich models were followed in perfect way. Langmuir model showed the monolayer adsorption of metal ions onto the homogeneous surface of nanocomposite with maximum adsorption capacity of 100.0 mg g⁻¹ and 143.0 mg g⁻¹ for Ni (II) and Pb (II) ions respectively, which was higher than the same for MgFe₂O₄ NPs and GO. Kinetic studies demonstrated that the pseudo-second order model well described the adsorption process. The ΔS° and ΔG° values revealed spontaneous nature of adsorption process. Positive ΔH° values using MgFe₂O₄ NPs and nanocomposite indicated endothermic removal; whereas using GO the removal was exothermic. The observed trend for coexisting ions correlated with hydrated ion radii. Efficiency of the adsorbents was also tested for realistic nickel electroplating industrial effluent. Apart from the higher adsorption potential of nanofabricated composite, its magnetic properties are advantageous in utilizing metal loaded nanocomposite for adsorption-desorption cycles for reuse.
Показать больше [+] Меньше [-]Substantially higher concentrations of mercury are detected in airborne particulate matter when using a preservation agent during sample preparation steps
2019
Budanovic, Maja | Tessensohn, Malcolm E. | Webster, Richard D.
Inductively coupled plasma – mass spectrometry (ICP-MS) analysis of airborne particulate bound mercury was carried out utilizing a high sulfur containing organic compound as a preservation agent to limit the negative bias that affects the determination of low levels of mercury. Between 600% and 1000% more Hg was detected with the use of the additive, lithium tetrathiafulvalene carboxylate (LiCTTF), during the microwave assisted acid digestion sample processing step without influencing the determination of other trace elements. The average Hg concentration was 0.05 ng m⁻³ and 0.4 ng m⁻³ in the absence and presence of LiCTTF, respectively. Stabilization of the mercury ions with the preservation agent resulted in higher precision for ICP-MS measurements with relative standard deviation (RSD) values ranging from 1.07% to 4.36%. The results obtained in this study emphasize the necessity of using a preservation agent in the atomic spectroscopic determination of mercury to prevent losses and is especially critical in low-level analyses such as those routinely performed in environmental mercury pollution trend assessments.
Показать больше [+] Меньше [-]