Уточнить поиск
Результаты 221-230 из 7,995
Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice Полный текст
2021
Wu, Jing | Li, Jiayan | Liu, Yanwei | Liao, Xinxin | Wu, Dongyi | Chen, Yunqin | Liang, Zengenni | Yuan, Zhihang | Li, Rongfang | Yi, Jine | Wen, Lixin
Zearalenone (ZEA) is an estrogenic toxin produced by Fusarium strains, that is widely present in crops, and endangers the reproductive system of animals. Tannic acid (TA) is a natural polyphenolic substance that is widespread in the roots, stems, and leaves of plants, and has special pharmacological activity. This study was designed to investigate the therapeutic effect of TA on ZEA-induced ovarian damage in mice and to explore the molecular mechanism involved. Ninety healthy Kunming female mice were divided into six equal groups. All the groups but the control group were administered daily with ZEA [10 mg/kg body weight (bw)] orally, for 7 days, to induce damage to the reproductive system. Some groups were also administered with TA (50, 100, and 200 mg/bw) for 7 days. Mice were euthanized 24 h later to allow for collection of serum and ovaries. TA can effectively alleviate the appearance of congestion and redness of the ovary, caused by ZEA, and increase the number of healthy growing follicles. Moreover, the estrogen content and the levels of MDA and ROS in the ovaries can be effectively reduced by TA. It can also reduce the apoptosis of ovarian cells, decreases the protein expression of the estrogen receptor, Fas, Fasl, caspase-3, caspase-8, caspase-9, and Bax, and increases the protein expression of Bcl-2. Our study indicates that TA reduces the strong estrogen and oxidative damage induced by ZEA, and these therapeutic effects may be partially mediated by the death receptor and mitochondrial apoptosis signaling pathway.
Показать больше [+] Меньше [-]Estimating uncertainties of source contributions to PM2.5 using moving window evolving dispersion normalized PMF Полный текст
2021
Song, Lilai | Dai, Qili | Feng, Yinchang | Hopke, Philip K.
Conventional factor analyses can present problems in cases with changing numbers of sources and/or time-dependent source compositions. There is also lack of a reliable method to estimate uncertainties in the source contributions derived by positive matrix factorization (PMF). Applying a moving window evolving PMF to hourly PM₂.₅ composition dataset from a field campaign in Tianjin China that included the Spring and Lantern Festivals and the start of COVID-19 pandemic has substantially improved the apportionment compared to a conventional analysis using the entire data. Festival-related sources (e.g., fireworks and residential burning here) have been clearly identified and estimated during both the Spring and Lantern Festivals. During this period, the sources changed because the time period overlaps with the outbreak of COVID-19 and related reductions in activity during the lockdown that began on Lunar New Year. Multiple PMF runs providing source contribution estimates made it possible to estimate the uncertainties in these values. Our results show that winds-dependent sources like dust and distant point sources have larger uncertainties than the other sources. Compared with conventional PMF analyses, the current method may better reflect the actual emissions as well as being able to estimate uncertainties. Thus, this approach appears to be an improvement if the appropriate data are available.
Показать больше [+] Меньше [-]Microplastics in composting of rural domestic waste: abundance, characteristics, and release from the surface of macroplastics Полный текст
2021
Gui, Jiaxi | Sun, Yue | Wang, Jingli | Chen, Xu | Zhang, Shuchi | Wu, Donglei
The rural domestic waste (RDW) compost has been widely used in agriculture and horticulture, but little is known about microplastics (MPs) in RDW composting. The current work deals with the abundance and characteristics of MPs in RDW composting, and the effects of composting processes on the composition of MPs. Compost samples from two RDW treatment stations were investigated, and a lab-scale experiment was carried out to verify the possible release of MPs from macroplastics (>25 mm) contained in the RDW during composting. MPs were identified using stereo-microscope and μ-FTIR. The average abundance of MPs (0.05–5 mm) in the RDW compost products was 2400 ± 358 items/kg (dry weight), and the main MPs shapes were fibers and films. Polyester, polypropylene (PP) and polyethylene (PE) were the most common polymer types. MPs having a size <1 mm accounted for more than 50% of the total quantity. With the progress of composting, the proportion of MPs having size <1 mm increased, and more foam MPs were observed in the late stage of composting. Under the influence of mechanical force, oxidation and biodegradation, a piece of expanded polystyrene (EPS), PP and PE macroplastic could release 4–63 MPs particles during the composting. Thus, the RDW compost was a significant source of MPs in soils, and the MPs in compost products were closely related to the quantity and type of plastic waste present in RDW, which helped to suggest better MPs control strategies.
Показать больше [+] Меньше [-]Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks Полный текст
2021
Xiao, Enzong | Ning, Zengping | Sun, Weimin | Jiang, Shiming | Fan, Wenjun | Ma, Liang | Xiao, Tangfu
Thallium (Tl) is a highly toxic metalloid and is considered a priority pollutant by the US Environmental Protection Agency (EPA). Currently, few studies have investigated the distribution patterns of bacterial and fungal microbiomes in Tl-impacted environments. In this study, we used high-throughput sequencing to assess the bacterial and fungal profiles along a gradient of Tl contents in Tl mine waste rocks in southwestern China. Our results showed that Tl had an important, but different influence on the bacterial and fungal diversity indices. Using linear regression analysis, we furtherly divided the dominant bacterial and fungal groups into three distinct microbial sub-communities thriving at high, moderate, and low levels of Tl. Furthermore, our results also showed that Tl is also an important environmental variable that regulates the distribution patterns of ecological clusters and indicator genera. Interestingly, the microbial groups enriched in the samples with high Tl levels were mainly involved in metal and nutrient cycling. Taken together, our results have provided useful information about the responses of bacterial and fungal groups to Tl contamination.
Показать больше [+] Меньше [-]New global aerosol fine-mode fraction data over land derived from MODIS satellite retrievals Полный текст
2021
Yan, Xing | Zang, Zhou | Liang, Zhen | Luo, Nana | Ren, Rongmin | Cribb, Maureen | Li, Zhanqing
The space-borne measured fine-mode aerosol optical depth (fAOD) is a gross index of column-integrated anthropogenic particulate pollutants, especially over the populated land. The fAOD is the product of the AOD and the fine-mode fraction (FMF). While there exist numerous global AOD products derived from many different satellite sensors, there have been much fewer, if any, global FMF products with a quality good enough to understand their spatiotemporal variations. This is key to understanding the global distribution and spatiotemporal variations of air pollutants, as well as their impacts on global environmental and climate changes. Modifying our newly developed retrieval algorithm to the latest global-scale Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product (Collection 6.1), a global 10-year FMF product is generated and analyzed here. We first validate the product through comparisons with the FMF derived from Aerosol Robotic Network (AERONET) measurements. Among our 169,313 samples, the satellite-derived FMFs agreed with the AERONET spectral deconvolution algorithm (SDA)-retrieved FMFs with a root-mean-square error (RMSE) of 0.22. Analyzed using this new product are the global patterns and interannual and seasonal variations of the FMF over land. In general, the FMF is large (>0.80) over Mexico, Myanmar, Laos, southern China, and Africa and less than 0.5 in the Sahelian and Sudanian zones of northern Africa. Seasonally, higher FMF values occur in summer and autumn. The linear trend in the satellite-derived and AERONET FMFs for different countries was explored. The upward trend in the FMFs was particularly strong over Australia since 2008. This study provides a new global view of changes in FMFs using a new satellite product that could help improve our understanding of air pollution around the world.
Показать больше [+] Меньше [-]Effects of sulfur application on cadmium accumulation in brown rice under wheat-rice rotation Полный текст
2021
Huang, Lijuan | Hansen, Hans Chr Bruun | Yang, Xiaosong | Mu, Jing | Xie, Zijian | Li, Songyan | Wu, Guangmei | Hu, Zhengyi
We investigated how sulfur (S) application prior to wheat cultivation under wheat-rice rotation influences the uptake of cadmium (Cd) in rice grown in low- and high-Cd soils. A pot experiment was conducted with four S levels (0, 30, 60, 120 mg S kg⁻¹) and two Cd rates (low and high, 0.35 and 10.35 mg Cd kg⁻¹) supplied to wheat. Part of the wheat straw was returned to the soil before planting rice, which was cultivated for 132 days. To explore the key mechanisms by which S application controlled Cd accumulation in brown rice, (1) soil pore water at the key growth stages was sampled, and dissolved Cd and S species concentrations were determined; (2) rice plant tissues (including iron plaque on the root surface) were sampled at maturity for Cd and S analysis. With increasing S level, Cd accumulation in brown rice peaked at 60 mg S kg⁻¹, irrespective of soil Cd levels. For high-Cd soils, concentrations of Cd in brown rice increased by 57%, 228%, and 100% at 30, 60, and 120 mg S kg⁻¹, respectively, compared with no S treatment. The increase in brown rice Cd by low S levels (0–60 mg kg⁻¹) could be attributed to (1) the S-induced increase in soil pore water sulfate increasing the Cd influx into rice roots and (2) the S-induced increase in leaf S promoting Cd translocation into brown rice. However, brown rice Cd decreased at 120 mg S kg⁻¹ due to (1) low Cd solubility at 120 mg S kg⁻¹ and (2) root and leaf S uptake, which inhibited Cd uptake. Sulfur application to wheat crop increased the risk of Cd accumulation in brown rice. Thus, applying S-containing fertilizers to Cd-contaminated paddy soils is not recommended.
Показать больше [+] Меньше [-]Influence of a weak typhoon on the vertical distribution of air pollution in Hong Kong: A perspective from a Doppler LiDAR network Полный текст
2021
Huang, Tao | Yang, Yuanjian | O’Connor, Ewan James | Lolli, Simone | Haywood, Jim | Osborne, M. (Martin) | Cheng, Jack Chin-Ho | Guo, Jianping | Yim, Steve Hung-Lam
High particulate matter (PM) and ozone (O₃) concentration in Hong Kong are frequently observed during the summertime typhoon season. Despite the critical effect of a typhoon on air pollution, contributions of vertical wind profile and cloud movement during transboundary air pollution (TAP) on surface PM and O₃ concentration have yet to be fully understood. This work is the first study to apply a network of Doppler light detection and ranging (LiDAR) as well as back trajectory analysis to comprehensively analyze the effect of a weak Typhoon (Danas) occurring during 16–19 July 2019 on different variations in PM and O₃ concentration. During the typhoon Danas, three types of surface air pollution with five episodes were identified: (1) low PM and high O₃ concentration; (2) co-occurring high PM and O₃ concentration and (3) high PM and low O₃ concentration. Employing our 3D Real-Time Atmospheric Monitoring System (3DREAMs) along with surface observations, we found the important role of TAP in the increases in surface PM and O₃ concentration with significant vertical wind shear that transported air pollutants at upper levels, and strong vertical mixing that brought air pollutants to the ground level. Cloud movement related to typhoon periphery, as well as high solar radiation due to sinking motion and remote transport by continental wind, have an impact on local O₃ concentration. For the substantial difference in O₃ concentration between two air quality measurement sites, the similar vertical aerosol distributions and wind profiles suggest the comparable TAP contributions at the two sites and thus infer the critical role of local O₃ photochemical process in the O₃ difference. This work comprehensively reveals the influences of a weak typhoon on variations in PM and O₃ during the five episodes, providing important references for air quality monitoring and forecast in regions under the influence of typhoon.
Показать больше [+] Меньше [-]Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions Полный текст
2021
Shin, Jaegwan | Kwak, Jinwoo | Lee, Yong-Gu | Kim, Sangwon | Choi, Minhee | Bae, Sungjun | Lee, Sang-Ho | Park, Yongeun | Chon, Kangmin
This study investigated the competitive adsorption mechanisms of pharmaceuticals (i.e., naproxen, diclofenac, and ibuprofen) toward the pristine and NaOH-activated biochars from spent coffee wastes (SCW) in lake water and wastewater effluent. The kinetic and isotherm studies revealed that the improved physicochemical characteristics and physically homogenized surfaces of the pristine SCW biochar through the chemical activation with NaOH were beneficial to the adsorption of pharmaceuticals (competitive equilibrium adsorption capacity (Qₑ, ₑₓₚ): NaOH-activated SCW biochar (61.25–192.07 μmol/g) > pristine SCW biochar (14.81–20.65 μmol/g)). The adsorptive removal of naproxen (Qₑ, ₑₓₚ = 14.81–18.81 μmol/g), diclofenac (Qₑ, ₑₓₚ = 15.73–20.00 μmol/g), and ibuprofen (Qₑ, ₑₓₚ = 16.20–20.65 μmol/g) for the pristine SCW biochar showed linear correlations with their hydrophobicity (log D at pH 7.0: ibuprofen (1.71) > diclofenac (1.37) > naproxen (0.25)). However, their Qₑ, ₑₓₚ values for the NaOH-activated SCW biochar (naproxen (176.39–192.07 μmol/g) > diclofenac (78.44–98.74 μmol/g) > ibuprofen (61.25–80.02 μmol/g)) were inversely correlated to the order of their log D values. These results suggest that the reinforced aromatic structure of the NaOH-activated SCW biochar facilitated the π-π interaction. The calculated thermodynamic parameters demonstrated that the competitive adsorption of pharmaceuticals on the NaOH-activated SCW biochar compared to pristine SCW biochar occurred more spontaneously over the entire pH (5.0–11.0) and ionic strength (NaCl: 0–0.125 M) ranges. These observations imply that the NaOH-activated SCW biochar might be potentially applicable for the removal of pharmaceuticals in lake water and wastewater effluent.
Показать больше [+] Меньше [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components Полный текст
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Показать больше [+] Меньше [-]Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country Полный текст
2021
Rodríguez, Erika A. | Ramirez, Diego | Balcázar, José L. | Jiménez, J Natalia
In developing countries, where high levels of antimicrobial resistance are observed in hospitals, the surveillance of this phenomenon in wastewater treatment plants (WWTPs) and the environment is very limited, especially using cutting-edge culture-independent methods. In this study, the composition of bacterial communities, the resistome and mobilome (the pool of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), respectively) at a WWTP were determined using shotgun metagenomics and culture-based approaches. Wastewater samples were collected at four sampling points of a WWTP in Antioquia, Colombia. A total of 24 metagenomes were analyzed. Specifically, there were marked differences in bacterial community composition, resistome, and mobilome, according to the WWTP sampling points. Bacterial families of clinical importance such as Moraxellaceae, Aeromonadaceae, and Enterobacteriaceae were mainly detected in the WWTP influent and effluent samples. Genes encoding resistance to macrolide-lincosamide-streptogramin, β-lactams, and those conferring multidrug resistance (e.g., acrB, adeG, and mexD) were the most abundant. Moreover, some clinically important ARGs such as blaKPC₋₂ and blaCTX₋M, and others not reported locally, such as blaTEM₋₁₉₆, blaGES₋₂₃, blaOXA₋₁₀, mcr-3, and mcr-5 were frequently detected. Co-occurrence network analyses indicated a significant association of ARGs such as blaOXA₋₅₈ and blaKPC genes with Aeromonadaceae and Enterobacteriaceae. Among the markers of MGEs, intI1 and ISCR8 were the most frequently detected. Altogether, this work reveals the importance of shotgun metagenomics and culture-based approaches in antimicrobial resistance studies. The findings also support that WWTPs are hotspots for antimicrobial resistance, whose analysis constitutes a powerful tool to predict the impact of antimicrobial resistance in a population.
Показать больше [+] Меньше [-]