Уточнить поиск
Результаты 2231-2240 из 4,938
Virulence, antimicrobial and heavy metal tolerance, and genetic diversity of Vibrio cholerae recovered from commonly consumed freshwater fish Полный текст
2019
Xu, Mengjie | Wu, Jinrong | Chen, Lanming
Vibrio cholerae is a leading waterborne pathogen worldwide. Continuous monitoring of V. cholerae contamination in aquatic products and identification of risk factors are crucial for assuring food safety. In this study, we determined the virulence, antimicrobial susceptibility, heavy metal tolerance, and genetic diversity of 400 V. cholerae isolates recovered from commonly consumed freshwater fish (Aristichthys nobilis, Carassius auratus, Ctenopharyngodon idellus, and Parabramis pekinensis) collected in July and August of 2017 in Shanghai, China. V. cholerae has not been previously detected in the half of these fish species. The results revealed an extremely low occurrence of pathogenic V. cholerae carrying the major virulence genes ctxAB (0.0%), tcpA (0.0%), ace (0.0%), and zot (0.0%). However, high incidence of virulence-associated genes was observed, including the RTX toxin gene cluster (rtxA-D) (83.0–97.0%), hlyA (87.8%), hapA (95.0%), and tlh (76.0%). Meanwhile, high percentages of resistance to antimicrobial agents streptomycin (65.3%), ampicillin (44.5%), and rifampicin (24.0%) were observed. Approximately 30.5% of the isolates displayed multidrug resistant (MDR) phenotypes with 42 resistance profiles, which were significantly different among the four fish species (MARI, P = 0.001). Additionally, tolerance of isolates to heavy metals Hg²⁺ (49.3%), Zn²⁺ (30.3%), and Pb²⁺ (12.0%) was observed. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based fingerprinting of the 400 V. cholerae isolates revealed 328 ERIC-genotypes, which demonstrated a large degree of genomic variation among the isolates. Overall, the results of this study support the need for food safety risk assessment of aquatic products.
Показать больше [+] Меньше [-]Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants Полный текст
2019
Jiang, Xiulan | Wang, Yanan | Xie, Hui | Li, Ruiqi | Wei, Jinling | Liu, Yan
The environmental behavior of paclobutrazol in soil and its toxicity were studied by field investigation and an outdoor pot experiment, and the residue of paclobutrazol was detected by gas chromatography–mass spectrometry. Field investigation has found that the residual paclobutrazol in the former succession crop could severely inhibit the growth of succeeding crops of potato; with migration and transformation of residual paclobutrazol in the soil, the stems of potato were thickened with residual amount of 1.23 mg kg⁻¹, the growth was slow, and the height of potato in soil with residual amount of 1.34 mg kg⁻¹ and the control was significantly different. The degradation dynamics of paclobutrazol fits with the first-order degradation kinetics, although T₁/₂ of paclobutrazol of the taro planting soil was 30.14–46.21 days and the residual paclobutrazol remained detectable even on day 120 after application. Taro leaves were sensitive to the stress of paclobutrazol pollution; the taro leaf thickness increased, the leaf area decreased, the chlorophyll content per area unit of taro leaf showed an obvious increased trend, and SOD and CAT activities and MDA and proline content increased significantly. Paclobutrazol promoted the tillering of taro, and the taro seedlings were dwarfed by 58.01, 63.27, and 75.88% at different concentrations. It indicated that taro had strong stress response ability under paclobutrazol pollution.
Показать больше [+] Меньше [-]A possible resolution of Malaysian sunset industry by green fertilizer technology: factors affecting the adoption among paddy farmers Полный текст
2019
Adnan, Nadia | Shahrina Md. Nordin, | Rasli, Amran Md
One of the innovations introduced toward tackling the heightening of environmental impact is green technology. In the agricultural industry, the implementation of green fertilizer technology (GFT) for the modern development of environmentally friendly technology is a necessity. Within the Malaysian agriculture sector, the GFT application is needed to increase production levels among all crops. One of the essential commodities of all crops has always been paddy, given its status as the staple food among the country’s population. Paddy production with the adoption of GFT potentially opens the path toward sustainable development in the industry as well as it also provides the food safety aspect. Moreover, this helps farmers to improve their productivity on paddy production in Malaysia. This paper attempts to evaluate the contributing socio-psychological factors, innovation attributes of environmental factors, and channels of communication to decision-making among farmers in Malaysia on GFT. Furthermore, this research also aims to assess the moderating role of cost between the farmer’s behavioral intention and the adoption of GFT. The sampling process followed the stratified sampling technique—overall, 600 survey questionnaires were dispersed and 437 effective responses were received. The structural analysis results obtained have revealed significant positive effect for perceived awareness, attitude, group norm, perceived behavioral control, environmental concern, agro-environmental regulations, relative advantage, compatibility, trialability, and observability, and on farmer’s behavioral intention, a significant effect for paddy farmer’s behavioral intention in order to adopt of GFT. Further, the interaction effects of cost on the link between farmer’s behavioral intention and adoption of GFT are statistically significant. Though, the finding could not back an outcome for the subjective norm, complexity, and mass media on farmer’s behavioral intention. Finally, critical outcomes obtained in this research contribute to deepening the thoughtfulness of paddy farmers’ adoption of GFT. This study concludes with policy recommendations and future directions of the research.
Показать больше [+] Меньше [-]Transfer of Copper and Zinc from Soil to Grapevine-Derived Products in Young and Centenarian Vineyards Полный текст
2019
Hummes, Ana Paula | Bortoluzzi, Edson Campanhola | Tonini, Vanei | da Silva, Leila Picolli | Petry, Claudia
Application of fungicides on grapevines is the main source of soil contamination by copper and zinc. Studies on this issue in relatively young grapevines are common; however, studies that elucidate the metal transfer in a soil-plant-food production system in a centenarian vineyard are scarce. The present work was aimed at tracing the copper and zinc accumulation in three different compartments—soil, plant, and vine products—in young and centenarian vineyards. Soil samples were collected in the middle plant row and rhizosphere positions of the vineyards; samples of root and leaf tissue and of grape juice and wine from these vineyards were also collected. In the centenarian vineyard, the soil available copper, regardless of vineyard position, reached 1100 mg kg⁻¹. Copper in root and leaf tissues reached 12,300 mg kg⁻¹ and 6800 mg kg⁻¹, respectively. In grape juice and wine, copper was 9.08 mg L⁻¹ and 0.78 mg L⁻¹, respectively. The roots retained most part of the metals reducing their transfer through the system. However, Cu levels in the grape juice from the centenarian vineyard exceeded by 908% the limit established by Brazilian and international norms. Zinc concentrations in soil and vine products were within the permitted level. Finally, the magnitude of metal transfer and accumulation is due to decades of cupric fungicide application and varies according to the compartment evaluated. The findings will provide information to rethink the vineyard agricultural practices in order to avoid environmental contamination by metals and compromising the whole food chain.
Показать больше [+] Меньше [-]Evaluation of Inoculum Sources for Aerobic Treatment of 2,3,4-Trifluoroaniline During Start-up and Shock Полный текст
2019
Zhao, Zhi-Qing | Shen, Xiao-Li | Zheng, Tu-Cai | Abbas, Ghulam | Fan, Rui | Li, Yan-Mei
Contamination with fluoroaromatics (FAs), particularly polyfluorinated aniline, is becoming a serious environmental problem worldwide. To shorten the start-up time, and increase the stability of treatment systems, this work focused on the effects of three seeding sources on treatment performances of 2,3,4-trifluoroaniline (2,3,4-TFA) during start-up and shock, as well as the acclimated strategy. After 246–323 days of acclimation in a stepwise feeding according to the inhibition degree, three sequencing batch reactors (SBRs) successfully achieved efficient removal, i.e., 300.00 mg/L of 2,3,4-TFA, with over 95.00% of degradation efficiency and 60.00–80.00% of defluorination rates. The sludge obtained from the fluorizated hydrocarbon wastewater treatment plant(FHS) without prior exposure to fluoroaniline was determined to be optimal, based on the observed shortest start-up time of 246 days, the highest defluorination rate of 70.00–80.00%, the fastest recovery time of 7 days after shock, and the highest microbial diversity with nine dominant bacterial groups. Furthermore, compared with the sludge obtained from pharmaceutical wastewater containing part of municipal wastewater treatment plant(PMS), the seeding source used in treating the comprehensive wastewater in industrial park (CIS) exhibited earlier defluorination reaction, higher defluorination rate and microbial diversity, but lower shock resistance. High-throughput sequencing demonstrated that microbial diversity was dependent on the origin of the inoculum after acclimation. We identified two predominant phyla in PMS, namely, Deinococcus-Thermus (24.43%) and Bacteroidetes (18.44%), whereas these were Acidobacteria and Chloroflexi in FHS and CIS. During the shock of 400 mg/L 2,3,4-TFA, the predominant bacteria norank_f_Blastocatellaceae and norank_f_Methylobacteriaceae disappeared, and the defluorination reaction hardly occurred, indicating that the bacterial genera could contribute to the defluorination reaction.
Показать больше [+] Меньше [-]Four Decades of Organic Anthropogenic Pollution: a Compilation for Djerdap Lake Sediments, Serbia [Erratum: Feb. 2020, v.231(2), p.67] Полный текст
2019
Hagemann, L. | Kašanin-Grubin, Milica | Gajica, Gordana | Štrbac, Snežana | Šajnović, Aleksandra | Jovančićević, Branimir | Vasić, Nebojša | Schwarzbauer, Jan
Analysis of limnic sediments can serve as a tool to assess sedimentary pollution for both the status quo as well as changes over time. However, in environmental studies, often only a small number of established well-studied contaminants are considered. This study focused on a more comprehensive investigation of sedimentary pollution of Djerdap Reservoir. Therefore, complementary analytical approaches were applied covering lipophilic organic contaminants and heavy metals. Investigations were performed on limnic sediment layers representing a period of 43 years of reservoir functioning. The core was sectioned on 11 samples and analyzed for, loss on ignition (LOI), and organic compounds (gas chromatography-mass spectrometry). Here, we report the quantitative data of 43 lipophilic organic compounds indicating both domestic and industrial emissions. Measured concentrations are generally low. Surprisingly, no polychlorinated biphenyls have been detected. Data concerning grain size, sedimentological, and inorganic composition were measured and published by in Kasanin-Grubin et al. (Kasanin-Grubin et al. 2019).
Показать больше [+] Меньше [-]Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratory-scale constructed wetland Полный текст
2019
Sun, Hongying | Xin, Quanwei | Ma, Zhihui | Lan, Siren
Previous studies have shown that plant diversity can enhance methane (CH₄) emission and nitrogen purification efficiency in constructed wetlands (CWs), but effect of plant diversity on carbon dioxide (CO₂) flux and carbon removal efficiency in CWs is unknown. Therefore, we established four plant diversity levels (each level containing 4, 3, 2, and 1 species, respectively) in laboratory-scale wetland microcosms fed with simulated wastewater. Results showed that plant species richness enhanced CO₂ emissions (84.7–124.7 mg CO₂ m⁻² h⁻¹, P < 0.01), carbon fixation rate (P < 0.05), and microbial biomass carbon (P < 0.001), but did not improve carbon removal (P > 0.05). The presence of Pontederia cordata increased CO₂ emissions, carbon fixation rate of belowground, and microbial biomass carbon (P < 0.05), whereas the presence of Phragmites australis only enhanced CO₂ emission (P < 0.05). However, the presence of Typha orientalis or Lythrum salicaria did not show an influence on CO₂ emissions and carbon removal (P > 0.05). Hence, our study highlights the importance of plant diversity in mediating CO₂ emission intensity and carbon processes but not carbon removal in CWs.
Показать больше [+] Меньше [-]A comparison between the four Geldart groups on the performance of a gas-phase annular fluidized bed photoreactor for volatile organic compound oxidation Полный текст
2019
Diniz, Leonardo Almeida | Hewer, Thiago Lewis Reis | Matsumoto, Danielle | Teixeira, Antonio Carlos Silva Costa
Heterogeneous photocatalytic oxidation (PCO) is a widely studied alternative for the elimination of volatile organic compounds (VOC) in air. In this context, research on novel photoreactor arrangements to enhance PCO rates is desired. Annular fluidized bed photoreactors (AFBPR) have yielded prominent results when compared to conventional thin film reactors. However, very few works aimed at optimizing AFBPR operation. In this study, TiO₂ photocalytic agglomerates were synthesized and segregated in specific size distributions to behave as Geldart groups A, B, C, and D fluidization. The TiO₂ agglomerates were characterized by XRD, FTIR spectra, and N₂ adsorption. Photocatalyst performances were compared in a 10-mm gapped AFBPR for degrading the model pollutant methyl-ethyl-ketone (MEK), using a 254-nm radiation source. Geldart group C showed to be inadequate for AFBPR operation due to the short operation range between fluidization and elutriation. In all the cases, photocatalytic reaction rates were superior to sole UV photolysis. Group A and group B demonstrated the highest reaction rates. Considerations based on mass transfer suggested that the reasons were enhanced UV distribution within the bed at lower flow rates and superior catalyst surface area at higher flow rates. Results also revealed that groups A, B, and D perform equally per catalyst area within an AFBPR if the fluidization numbers (FN) are high enough.
Показать больше [+] Меньше [-]The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: a review Полный текст
2019
Khafaga, Asmaa F. | Abd El-Hack, Mohamed E. | Taha, Ayman E. | Elnesr, Shaaban S. | Alagawany, Mahmoud
Cadmium (Cd) is a heavy and toxic metal and easily absorbed by animals and plants; subsequently, it is an environmental risk factor with several toxic effects in humans and animals. The main pathway of human or animal exposure to Cd is through its ingestion by water or food and by particles or fume inhalation during industrial processes. With continuous exposure to small levels of cadmium, it is being deposited in different tissues day after day, causing toxic effects on the liver, kidney, and testes. Long-term exposure to this toxic metal resulted in inflammatory infiltration, necrosis of hepatocytes, degenerative changes in testis tissues, reduction in spermatocytes, degeneration in renal tubules, and hypertrophy of renal epithelium. Therefore, we need an effective treatment to overcome cadmium poisoning. Thus, in the current review, we try to provide compiled reports and summarize information about the toxicological effects of Cd in human, animals, and poultry. This review also provides updated information about the protective actions of herbs and herbal extracts and their role as an effective strategy in reducing or preventing serious health problems and tissue damage in response to Cd toxicity.
Показать больше [+] Меньше [-]Adsorption of As(V) from Water over a Hydroxyl-Alumina Modified Paddy Husk Ash Surface and Its Sludge Immobilization Полный текст
2019
Sarmah, Susmita | Saikia, Jitu | Phukan, Ankana | Lochan Goswamee, Rajib
Arsenic (As) is considered as one of the most hazardous elements found in the groundwater. It is present in water in both arsenate (As(V)) and arsenite (As(III)) forms. On exposure for a considerable length of time to water having As concentration above the maximum permissible limit of 10 μg/L, there is a serious threat of developing various health problems including cancer. There is frequent reporting about the development of different newer methods for the removal of arsenic from water. In this present approach, a low-cost product namely modified paddy husk ash (PHA) was used as an adsorbent for the adsorption of arsenic from water. The adsorbent is important from the point of its easy availability in the tropical paddy producing countries. For improved removal efficiency and disposal of spent adsorbent, the surface of the PHA was activated with an aluminum oligomeric solution called as hydroxyl-alumina. To understand the process, various techniques such as XRD, SEM–EDS, particle size determination, and zeta potential measurements were used and the effects like variation of adsorbent dose, pH, initial arsenic concentration, and contact time were studied. The Freundlich adsorption isotherm and pseudo-second-order kinetic models were found to be the best fitted adsorption isotherm and kinetic data models respectively thereby confirming the adsorption as a multilayer chemisorption process. Finally, the issue of disposal of the spent sludge through the successful formation of cement clinkers was studied.
Показать больше [+] Меньше [-]