Уточнить поиск
Результаты 2391-2400 из 4,929
Modulating the Effect of Iron and Total Organic Carbon on the Efficiency of a Hydrogen Peroxide-Based Algaecide for Suppressing Cyanobacteria
2019
Crafton, Elizabeth A. | Cutright, Teresa J. | Bishop, West M. | Ott, Donald W.
The intensity and frequency of cyanobacteria-dominated harmful algal blooms (cHABs) has been increasing. A key issue associated with cHABs is the potential to release cyanotoxins, such as microcystin. One of the primary methods for addressing cHABs in a reservoir is the application of algaecides. This research evaluated the impact of common environmental factors (i.e., Fe, total organic carbon) on the efficacy of a hydrogen peroxide-based algaecide to attain control of a targeted cyanobacterial population. The results found that sodium carbonate peroxydrate (SCP, trade name PAK®27) at half the manufacturer’s suggested application was effective at suppressing cyanobacteria for 2 weeks. For example, reactors that contained a full level of TOC and 1 mg/L Fe significantly decreased by 89% from 21,899 to 2437 ± 987 cells/mL (p < 0.05) by 2 days after treatment with half-dose SCP while reactors that contained the full-dose TOC and no SCP treatment depicted an increase in cyanobacteria population over the first week. Furthermore, as the cyanobacteria population decreased, the algal assemblage began to switch to being green algae dominant. Under the experimental conditions evaluated, Fe and total organic content did not interfere with the efficacy of SCP. SCP can provide effective control of cyanobacteria in a variety of environmental conditions.
Показать больше [+] Меньше [-]Air pollution survey across the western Mediterranean Sea: overview on oxygenated volatile hydrocarbons (OVOCs) and other gaseous pollutants
2019
Vichi, Francesca | Imperiali, Andrea | Frattoni, Massimiliano | Perilli, Mattia | Benedetti, Paolo | Esposito, Giulio | Cecinato, Angelo
Despite the Mediterranean Sea basin is among the most sensitive areas over the world for climate change and air quality issues, it still remains less studied than the oceanic regions. The domain investigated by the research ship Minerva Uno cruise in Summer 2015 was the Tyrrhenian Sea. An overview on the marine boundary layer (MBL) concentration levels of carbonyl compounds, ozone (O₃), and sulfur dioxide (SO₂) is reported. The north-western Tyrrhenian Sea samples showed a statistically significant difference in acetone and SO₂ concentrations when compared to the south-eastern ones. Acetone and SO₂ values were higher in the southern part of the basin; presumably, a blend of natural (including volcanism) and anthropogenic (shipping) sources caused this difference. The mean acetone concentration reached 5.4 μg/m³; formaldehyde and acetaldehyde means were equal to 1.1 μg/m³ and 0.38 μg/m³, respectively. Maximums of 3.0 μg/m³ for formaldehyde and 1.0 μg/m³ for acetaldehyde were detected along the route from Civitavecchia to Fiumicino. These two compounds were also present at levels above the average in proximity of petrol-refining plants on the coast; in fact, formaldehyde reached 1.56 μg/m³ and 1.60 μg/m³, respectively, near Milazzo and Augusta harbors; meanwhile, acetaldehyde was as high as 0.75 μg/m³ at both sites. The levels of formaldehyde agreed with previously reported measurements over Mediterranean Sea and elsewhere; besides, a day/night trend was observed, confirming the importance of photochemical formation for this pollutant. According to this study, Mediterranean Sea basin, which is a closed sea, was confirmed to suffer a high anthropic pressure impacting with diffuse emissions, while natural contribution to pollution could come from volcanic activity, particularly in the south-eastern Tyrrhenian Sea region.
Показать больше [+] Меньше [-]Identification of intermediates, acute toxicity removal, and kinetics investigation to the Ametryn treatment by direct photolysis (UV254), UV254/H2O2, Fenton, and photo-Fenton processes
2019
de Oliveira, Dirce Martins | Cavalcante, Rodrigo Pereira | da Silva, Lucas de Melo | Sans Moyà, Carme | Esplugas, Santiago | de Oliveira, Silvio Cesar | Junior, Amilcar Machulek
This paper reports the degradation of 10 mg L⁻¹ Ametryn solution with different advanced oxidation processes and by ultraviolet (UV₂₅₄) irradiation alone with the main objective of reducing acute toxicity and increase biodegradability. The investigated factors included Fe²⁺ and H₂O₂ concentrations. The effectiveness of the UV₂₅₄ and UV₂₅₄/H₂O₂ processes were investigated using a low-pressure mercury UV lamp (254 nm). Photo-Fenton process was explored using a blacklight blue lamp (BLB, λ = 365 nm). The UV₂₅₄ irradiation process achieved complete degradation of Ametryn solution after 60 min. The degradation time of Ametryn was greatly improved by the addition of H₂O₂. It is worth pointing out that a high rate of Ametryn removal was attained even at low concentrations of H₂O₂. The kinetic constant of the reaction between Ametryn and HO● for UV₂₅₄/H₂O₂ was 3.53 × 10⁸ L mol⁻¹ s⁻¹. The complete Ametryn degradation by the Fenton and photo-Fenton processes was observed following 10 min of reaction for various combinations of Fe²⁺ and H₂O₂ under investigation. Working with the highest concentration (150 mg L⁻¹ H₂O₂ and 10 mg L⁻¹ Fe²⁺), around 30 and 70% of TOC removal were reached within 120 min of treatment by Fenton and photo-Fenton processes, respectively. Although it did not obtain complete mineralization, the intermediates formed in the degradation processes were hydroxylated and did not promote acute toxicity of Vibrio fischeri. Furthermore, a substantial improvement of biodegradability was obtained for all studied processes.
Показать больше [+] Меньше [-]Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source
2019
Shao, Mengyu | Guo, Liang | She, Zonglian | Gao, Mengchun | Zhao, Yangguo | Sun, Mei | Guo, Yiding
External carbon source was usually added to enhance denitrification efficiency for nitrogen removal in wastewater treatment. In this study, waster sludge alkaline fermentation liquid was successfully employed as an alternative carbon source for biological denitrification. The denitrification performance was studied at different C/Ns (carbon-to-nitrogen ratios) and HRTs (hydraulic retention times). A C/N of 7 and an HRT of 8 h were the optimal conditions for denitrification. The nitrate removal efficiency of 96.4% and no obvious nitrite accumulation in the effluent were achieved under the optimal conditions with a low soluble chemical oxygen demand (SCOD) level. The sludge carbon source utilization was analyzed and showed that the volatile fatty acids (VFAs) were prior utilized than proteins and carbohydrates. The excitation-emission matrix (EEM) spectroscopy with fluorescence regional integration (FRI) was adopted to analyze the compositional and variations of dissolved organic matters (DOM). Moreover, a high denitrification rate (VDN) and potential (PDN) with low heterotroph anoxic yield (YH) was exhibited at the optimal C/N and HRT condition, indicating the better denitrification ability and organic matter utilization efficiencies.
Показать больше [+] Меньше [-]Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter
2019
Chen, Fu | Zeng, Siyan | Ma, Jing | Zhu, Qianlin | Zhang, Shaoliang
Chlorpyrifos manufacturing wastewater (CMW) is characterized by complex composition, high chemical oxygen demand (COD) concentration, and toxicity. An integrated process comprising of peroxide (H₂O₂) promoted-catalytic wet air oxidation (PP-CWAO), struvite precipitation, and biological aerated filters (BAF) was constructed to treat CMW at a starting COD of 34000–35000 mg/L, total phosphorus (TP) of 5550–5620 mg/L, and total organophosphorus (TOP) of 4700–4840 mg/L. Firstly, PP-CWAO was used to decompose high concentrations of organic components and convert concentrated and recalcitrant TOP to inorganic phosphate. Copper citrate and ferrous citrate were used as the catalysts of PP-CWAO. Under the optimized conditions, 100% TOP was converted to inorganic phosphate with 95.6% COD removal. Then, the PP-CWAO effluent was subjected to struvite precipitation process for recovering phosphorus. At a molar ratio of Mg²⁺:NH₄⁺:PO₄³⁻ = 1.1:1.0:1.0, phosphate removal and recovery reached 97.2%. The effluent of struvite precipitation was further treated by the BAF system. Total removals of 99.0%, 95.2%, 97.3%, 100%, and 98.3% were obtained for COD, total suspended solids, TP, TOP, and chroma, respectively. This hybrid process has proved to be an efficient approach for organophosphate pesticide wastewater treatment and phosphorus reclamation.
Показать больше [+] Меньше [-]Effect of temperature on tertiary nitrogen removal from municipal wastewater in a PHBV/PLA-supported denitrification system
2019
Xu, Zhongshuo | Dai, Xiaohu | Chai, Xiaoli
In this study, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(lactic acid) (PHBV/PLA)–supported denitrification system was built to remove nitrogen from municipal wastewater treatment plant secondary effluent, and the influence of operating temperature on nitrogen removal was further investigated. Results indicated that a PHBV/PLA-supported denitrification system could effectively fulfill the tertiary nitrogen removal. The nitrogen removal efficiency gradually declined with the operating temperature decreasing, and the denitrification rate at 30 °C was 5 times higher than that at 10 °C. Meanwhile, it was found that a slight TOC accumulation only occurred at 30 °C (with an average of 2.03 mg/L) and was avoided at 10~20 °C. The reason for effluent TOC variation was further explained through the consumption and generation pathways of TOC in this system. Furthermore, the temperature coefficient was about 0.02919, indicating that the PHBV/PLA-supported denitrification system was a little sensitive to temperature. A better knowledge of the effect of operating temperature will be significant for the practical application of the solid-phase denitrification system.
Показать больше [+] Меньше [-]Elemental characterization of general aviation aircraft emissions using moss bags
2019
Turgut, Enis T. | Gaga, Eftade O. | Jovanović, Gordana | Odabasi, Mustafa | Artun, Gulzade | Ari, Akif | Uros̆ević, Mira Aničić
In light of growing concern and insufficient knowledge on the negative impact of aircraft emissions on environmental health, this study strives to investigate the air burden of major and trace elements caused by general aviation, piston-engine, and turboprop aircraft, within the vicinity of Eskisehir Hasan Polatkan Airport (Eskisehir, Turkey). The levels of 57 elements were investigated, based on moss bag biomonitoring using Sphagnum sp., along with chemical analyses of lubrication oil and aviation gasoline fuel used in the aircraft’s operations. Five sampling sites were selected within the vicinity of the airport area to capture spatial changes in the concentration of airborne elements. The study demonstrates that moss bag biomonitoring is a useful tool in the identification of differences in the air burden by major and trace elements that have concentrated downwind of the aircraft emission sources. Moreover, pollutant enrichment in the Sphagnum moss bags and elemental characterization of oil/fuel are in agreement suggesting that Pb, followed by Cd, Cu, Mo, Cr, Ni, Fe, Si, Zn, Na, P, Ca, Mg, and Al are dominant elements that shaped the general aviation aircraft emissions.
Показать больше [+] Меньше [-]Response of Water Chemistry and Young-of-Year Brook Trout to Channel and Watershed Liming in Streams Showing Lagging Recovery from Acidic Deposition
2019
Josephson, Daniel C. | Lawrence, Greg B. | George, Scott D. | Siemion, Jason | Baldigo, Barry P. | Kraft, Clifford
Reductions in sulfur emissions have initiated chemical recovery of surface waters impacted by acidic deposition in the Adirondack region of New York State. However, acidified streams remain common in the region, which limits recovery of brook trout (Salvelinus fontinalis) populations. To investigate liming as a method to accelerate recovery of brook trout, the channels of two acidified streams were limed annually from 2012 to 2015, and an entire watershed of a third acidified tributary was limed by helicopter in 2013. Stream flow, water chemistry, and density of young-of-year (YOY) brook trout were measured in limed streams, an untreated acidified stream, and a buffered reference stream. Lime additions increased pH and acid-neutralizing capacity and decreased inorganic monomeric aluminum concentrations to less than 2.0 μmol/L, the minimum concentration at which in situ brook trout mortality has been documented. However, of the two channel-limed streams, only stream T8 showed a significant response (P < 0.01) in YOY density, increasing from a mean of 0.4 fish/m² before liming to 2.7 fish/m² after liming. No YOY brook trout response was observed in the stream within the limed watershed. Groundwater inputs to streams were identified by relative differences in temperature and concentrations of silica and sodium. YOY brook trout densities increased only in the channel-limed stream (T8) with suitable groundwater inputs for fall spawning and a summer nursery. Results suggest that targeted liming of acidified streams with the necessary groundwater habitat could be beneficial in accelerating recovery of brook trout populations.
Показать больше [+] Меньше [-]Street Tree Pits as Bioretention Units: Effects of Soil Organic Matter and Area Permeability on the Volume and Quality of Urban Runoff
2019
Frosi, Marcelo Henrique | Kargar, Maryam | Jutras, Pierre | Prasher, Shiv O. | Clark, O Grant
The quantity, intensity, and quality of urban stormwater runoff are changing as a consequence of urbanization and climate change. Low impact development (LID) techniques (e.g., bioretention systems) are emerging to manage runoff quantity and quality. Street tree pits were used as bioretention units in Montreal, Canada. The concentration and mass flux of contaminants (Na, Cr, Ni, Cu, Zn, Cd, Pb) and dissolved organic carbon (DOC) were measured in soil solution samples from the tree pits. The soil organic matter (SOM) and the permeability of the area nearby the tree pit (sidewalk and front lawn) were tested. The SOM did not affect contaminant concentrations. However, tree pits with higher SOM reduced the mass flux of contaminants more than tree pits with lower SOM. Sidewalk permeability decreased the concentration and mass flux of contaminants observed (e.g., Na and Cr). The estimated water flux in the open part of the tree pit changed from 6.15 to 1.64 mm week⁻¹ from the less permeable units (absence of lawn + impermeable sidewalk) to the more permeable units (presence of lawn + permeable sidewalk). Urban runoff quality and quantity were locally affected by the tree pits. This indicates that the increase in surface permeability and SOM in street tree pits is advisable. Street tree pits have the potential as bioretention units to locally mitigate some of the impacts of urbanization. City planners could consider the use of street tree pits as bioretention units to help the management of urban runoff.
Показать больше [+] Меньше [-]Characteristics and sources of carbonaceous aerosol across urban and rural sites in a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China
2019
Yang, Wenwen | Xie, Shaodong | Zhang, Ziquan | Hu, Jian | Zhang, Lingyun | Lei, Xiong | Zhong, Lijian | Hao, Yufang | Shi, Fangtian
Organic carbon (OC) and elemental carbon (EC) were measured in 24 h fine particulate matter (PM₂.₅) samples collected from May 2015 to April 2016 at urban and rural sites in Nanchong, a rapidly urbanized but low-level industrialized city in the Sichuan Basin, China. The annual average PM₂.₅, OC, and EC concentrations at urban sites were 45.6–55.7, 8.5–11.5, and 2.8–3.4 μg m⁻³, respectively, which were similar to the corresponding values (48.3, 10.6, and 3.3 μg m⁻³) at the rural site. The PM₂.₅ concentrations displayed strong monthly variations, with the highest (78.8–105.0 μg m⁻³) in January or February. Likewise, daily OC and EC concentrations exhibited high values in October (only for OC) and December 2015 to February 2016. Correlation, positive matrix factorization, and concentration weighted trajectory analyses were combined to investigate the sources of carbonaceous aerosol. The results indicated that OC and EC were mainly from biomass burning (60.7% and 45.8%) and coal combustion (30.2% and 25.7%), followed by vehicle emissions and road dust. The enhanced emissions from residential coal and biofuel uses in winter and straw combustion in October contributed to higher concentrations of OC and EC during these months. The contributions of biomass burning to OC and EC were significantly higher at the rural site (69.2% and 51.8%) than urban sites (56.3–58.6% and 37.8–41.5%). In addition to local emissions, the high concentrations of OC and EC at Nanchong were also influenced by regional transport in the basin.
Показать больше [+] Меньше [-]