Уточнить поиск
Результаты 2571-2580 из 4,935
Spiramycin adsorption behavior on activated bentonite, activated carbon and natural phosphate in aqueous solution Полный текст
2019
El Maataoui, Yassine | El M’rabet, Mohamadine | Maaroufi, Abdelkrim | Dahchour, Abdelmalek
Efficacy of activated bentonite, activated carbon, and natural phosphate under experimental conditions was tested as low-cost adsorbents for spiramycin antibiotic removal from aqueous solution. Equilibrium kinetic and isotherm adsorption process are well described by pseudo-second order and Langmuir isotherm models for activated bentonite and activated carbon, while natural phosphate follows pseudo-first order and Freundlich models, respectively. Obtained results revealed that activated bentonite has the highest adsorption capacity (260.3 mg/g) as compared to activated carbon (80.3 mg/g) and natural phosphate (1.7 mg/g). The adsorption capacity decreases for all adsorbents in the presence of NaCl. The adsorption processes are facilitated in the alkaline pH range for activated bentonite and activated carbon, whereas, for natural phosphate, the acidic pH range is favorable. They are involving ion exchange and hydrogen bond mechanisms as well as Van der Waals forces and also π interactions for activated carbon. Thermodynamic calculation shows that spiramycin adsorption is endothermic and spontaneous on all adsorbents. The activated bentonite reusability is more efficient by more than 95% in two-step desorption using NaOH and HCl eluents compared to activated carbon. Thus, activated bentonite is a promising adsorbent for spiramycin removal from aqueous solution.
Показать больше [+] Меньше [-]Extended STIRPAT model-based driving factor analysis of energy-related CO2 emissions in Kazakhstan Полный текст
2019
Xiong, Chuanhe | Chen, Shuang | Huang, Rui
Extended stochastic impact by regression on population, affluence, and technology model incorporating ridge regression was used to analyze the driving mechanism of energy-related CO₂ emissions in Kazakhstan during 1992–2014. The research period was divided into two stages based on GDP of Kazakhstan in 1991 (85.70 × 10⁹ dollars), the first stage (1992–2002), GDP < 85.70 × 10⁹ dollars, the stage of economic recovery; the second stage (2003–2014), GDP > 85.70 × 10⁹ dollars, the stable economic development stage. The results demonstrated that (1) population scale and the technological improvement were the dominant contributors to promote the growth of the CO₂ emissions during 1992–2014 in Kazakhstan. (2) Economic growth and industrialization played more positive effect on the increase of the CO₂ emissions in the stable economic development stage (2003–2014) than those in the stage of economic recovery (1992–2002). The proportion of the tertiary industry, the trade openness, and foreign direct investment were transformed from negative factors into positive factors in the stable economic development stage (2003–2014). (3) Due to the over-urbanization of Kazakhstan before the independence, the level of urbanization continued to decline, urbanization was the first factor to curb CO₂ emissions during 1992–2014. Finally, some policy recommendations are put forward to reduce energy-related carbon emissions.
Показать больше [+] Меньше [-]Low Threat by Sulphate Particles and Ozone on Tufa at Plitvice Lakes National Park Полный текст
2019
Kovač-Andrić, Elvira | Matasović, Brunislav | Radanović, Tatjana | Šrajer Gajdošik, Martina
Plitvice Lakes National Park presents one of the most beautiful karst complexes in the world. Its waters are supersaturated with dissolved calcium carbonate (calcite) which is released and deposited in the form of tiny crystals as a result of water splashing at tufa barriers. Sulphates, present in the particulate matter (PM), can be deposited on the surface of the calcite. In the air, sulphate particles are formed by the oxidation of SO₂ in a series of chemical reactions as reported by Li et al. (Atmospheric Chemistry and Physics 6:2453–2464, 2006). Fast oxidation of SO₂ in nature can also take place on the surface of the calcite in the presence of ozone and is significantly enhanced by high humidity as reported by Li et al. (Atmospheric Chemistry and Physics 6:2453–2464, 2006) and Massey (Science of the Total Environment 227(2–3), 109–121, 1999). The resulting sulphates can destroy the surface of the calcite and indirectly influence the composition and quality of water. Hourly concentrations of ozone, PM₁₀ and PM₂.₅ at the monitoring station Plitvice Lakes in the period from 2012 to 2014 are presented. After assessing the observed values of both PM and ozone, presently there are no significant danger for Plitvice Lakes. However, this can change in the future so continuous monitoring will be necessary in the future.
Показать больше [+] Меньше [-]Paracetamol Degradation Performance and Mechanisms Using Microwave-Assisted Heat-Activated Persulfate in Solutions Полный текст
2019
Zhang, Qi | Cheng, Song | Xia, Hongying | Zhang, Libo | Zhou, Junwen | Li, Chunyang | Shu, Jianhua | Jiang, Xin
A microwave (MW) heat-activated the persulfate (PS) process was employed to treat paracetamol (PAM) in wastewater, and the powder-activated carbon (PAC) be used is used as a catalyst to accelerate this reaction process. The PAM added (100 mg) to the solution was nearly completely removed within 70 min, and the PH, temperature, PAC, and PS dosage have great influence on the degradation process; the total organic carbon (TOC) removal rate reached 98%. The PAC¹ still had a good catalytic effect after being reused six times. The radical mechanism was investigated to determine the type of dominant active species involved in PAM degradation. Sulfate radicals ([Formula: see text]) were the dominant oxidizing agent for PAM degradation under acidic conditions. The degradation mechanism was proposed based on the PAM degradation intermediates, which were identified using ultra-high-performance liquid chromatography coupled with linear trap quadrupole orbitrap mass spectrometry. Three types of possible reaction pathways for PAM were identified as follows: including hydroxylation of the benzene ring, amine group oxidation at the benzene ring, and amine (HN–C=O) functional group N–C bond cleavage.
Показать больше [+] Меньше [-]Adsorption of Methylene Blue onto Novel Biochars Prepared from Magnolia grandiflora Linn Fallen Leaves at Three Pyrolysis Temperatures Полный текст
2019
Ji, Bin | Zhu, Lin | Song, Hongjiao | Chen, Wei | Guo, Shaodong | Chen, Fengting
The adsorption properties and mechanisms of methylene blue (MB) onto novel biochars produced by the fallen leaves of Magnolia grandiflora Linn (MGL), at different pyrolysis temperatures (450 °C, 500 °C, 550 °C) were explored. Results of the adsorption experiments revealed that the fallen leaf-biochar of MGL (MGLB) pyrolyzed at 450 °C (MGLB450) had the highest adsorption capacity of MB (114.15 mg g⁻¹) and MGLB pyrolyzed at 500 °C (MGLB500) was lowest (88.13 mg g⁻¹). The characterization results showed that the BET surface area (41.784 m² g⁻¹) and total pore volume (0.043 cm³ g⁻¹) of MGLB450 were low, but the contents of oxygen-containing functional groups were highest. Oxygen-containing functional group might have a greater impact on the adsorption of MB than its physical characteristics. The adsorption capacity increased with reaction temperature, indicating that the MG adsorption onto biochars was endothermic. The higher initial concentrations of MB and pH were beneficial to adsorption. The adsorption kinetics showed that the adsorption followed pseudo-second-order kinetics model. The obtained equilibrium data were fitted better by Langmuir model rather than Freundlich model.
Показать больше [+] Меньше [-]The release mechanism of heavy metals from lab-scale vertical flow constructed wetlands treating road runoff Полный текст
2019
Zhou, Yongchao | Gu, Tianfeng | Yi, Wentao | Zhang, Tuqiao | Zhang, Yiping
Constructed wetlands (CWs) have been applied to remediate heavy metal pollution effectively in practice. However, the heavy metal release from CWs has not been paid enough attention. In this study, a 5-month experiment was carried out with three parallel lab-scale vertical flow constructed wetlands (VFCWs) with zeolites as fillers. The artificial rainwater was pumped into VFCWs to study the release characteristic and mechanisms of heavy metals (Cu, Zn, Cr, and Pb). The results showed that significant amounts of Zn and Cu were released from the VFCWs at the end of the experiment while Pb and Cr rarely escaped. The upper layer (0–30 cm) of the VFCWs was the most effective area for heavy metal removal due to the presence of sediments, but it was also the most active area for heavy metal release. To explain this result, the sediments were analyzed before and after being leached by the tap water. The results indicated that Zn and Cu existed mainly in the exchangeable state, and they had strong leachability and bioavailability, causing its releases. Also, competitive adsorption of different metals meant that the metal ions with strong adsorption to zeolite caused the metal ions with weak adsorption to be desorbed from zeolites, and thus, a large amount of Zn escaped from VFCWs. The escape of heavy metals from CWs illustrated that it should be paid more attention in the management.
Показать больше [+] Меньше [-]Temporal variations of atmospheric benzene and its health effects in Tehran megacity (2010-2013) Полный текст
2019
Jafari, Ahmad Jonidi | Faridi, Sasan | Momeniha, Fatemeh
The main aims of the present research were (1) investigation of the temporal trends of atmospheric benzene concentrations in Tehran city during the period 2010 to 2013 and (2) assessment of carcinogenic and non-carcinogenic health risks of inhalation exposure to benzene. For the first objective, the data of ambient air benzene concentrations were derived from 15 air quality monitoring stations (AQMSs) in Tehran during the years 2010 to 2013 and they were temporally investigated after data cleaning and missing data imputation. The excess lifetime cancer risk (ELCR) and hazard quotient (HQ) were estimated to reveal the carcinogenic and non-carcinogenic health effects of exposure to ambient benzene. Our findings indicated that over 2010–2013, annual mean concentrations of benzene were in the range of 1.84 to 2.57 μg m⁻³, and the highest annual mean concentration was observed in 2011 with a mean of 2.57 μg m⁻³. The four-year average concentration of benzene during the period from 2010 to 2013 was 2.14 μg m⁻³. Furthermore, the HQ for inhalation exposure to ambient benzene was lower than the acceptable risk level (HQ < 1) over the study time period which indicated that the non-carcinogenic effects are very unlikely to happen. In addition, health risk assessment for ELCR showed that the potential cancer risk for inhalation exposure to benzene was 1.67 × 10⁻⁵ over the study period, which is significantly higher than the limits recommended by the U.S. EPA (1 × 10⁻⁶). Our study clearly proves that the ambient benzene concentration in Tehran has substantially higher carcinogenic effects on the population. Appropriate sustainable control measures should be taken to reduce air benzene concentration and protect public health.
Показать больше [+] Меньше [-]Impact of financial development and economic growth on environmental quality: an empirical analysis from Belt and Road Initiative (BRI) countries Полный текст
2019
Saud, Shah | Chen, Songsheng | Danish, | Haseeb, Abdul
This study aims to analyze the impact of financial development, foreign direct investment, economic growth, electricity consumption, and trade openness on environmental quality for a panel of 59 Belt and Road Initiative (BRI) countries, over the period of 1980–2016. The presence of the environmental Kuznets curve (EKC) hypothesis is investigated. The cross-sectional augmented Dickey-Fuller (CADF) and cross-sectional Im, Pesaran, and Shin panel unit root test; the Westerlund cointegration test, the dynamic seemingly unrelated regression (DSUR) approach; and the Dumitrescu and Hurlin (Econ Model 29:1450–1460, 2012) panel causality approach are employed. It is found that the analyzed variables are stationary at first differences and are cointegrated. It is also found that an increase in financial development, foreign direct investment, and trade openness enhance environmental quality, while the increase in economic growth and electricity consumption degrade environmental quality. The presence of the EKC hypothesis for the selected panel countries is validated. Furthermore, the Dumitrescu-Hurlin (DH) panel causality test result confirmed the presence of bidirectional causality among economic growth, foreign direct investment, financial development, electricity consumption, and trade openness with environmental quality.
Показать больше [+] Меньше [-]Incorporation of Electrochemically Exfoliated Graphene Oxide and TiO2 into Polyvinylidene Fluoride-Based Nanofiltration Membrane for Dye Rejection Полный текст
2019
Suriani, A. B. | Muqoyyanah, | Mohamed, A. | Othman, M. H. D. | Rohani, R. | Yusoff, I. I. | Mamat, M. H. | Hashim, N. | Azlan, M. N. | Ahmad, M. K. | Marwoto, P. | Sulhadi, | Kusuma, H. H. | Birowosuto, M. D. | Khalil, H. P. S Abdul
In this work, the novel direct synthesis method of dimethylacetamide-based graphene oxide (GO) was performed through electrochemical exfoliation assisted by commercially available single-tail sodium dodecyl sulphate (SDS) surfactant. Then, the synthesised GO (SDS–GO) was incorporated into polyvinylidene fluoride (PVDF) solution to produce a nanofiltration (NF) membrane through the phase immersion method. The addition of GO into the preparation of membrane solution alters the membrane morphology and improves the hydrophilicity. TiO₂ was also used as an additive for the NF membrane fabrication to further increase the membrane hydrophilicity. The fabricated PVDF/SDS–GO/TiO₂ and PVDF/SDS–GO NF membranes were compared with pure PVDF membrane. Then, the fabricated NF membranes were tested for methylene blue (MB) rejection with 10 ppm MB concentration. On the basis of the dead-end cell measurement operated at the pressure of 2 bar, the PVDF/SDS–GO/TiO₂ presents high MB rejection (92.76%) and the highest dye flux (7.770 L/m² h). This dye flux value was sevenfold higher than that of pure PVDF membrane (1.146 L/m² h) which was due to the utilisation of both GO and TiO₂ that improved the membrane hydrophilicity as indicated by the lowest contact angle (64.0 ± 0.11°). High porosity (57.46%) also resulted in the highest water permeability (4.187 L/m² h bar) of the PVDF/SDS–GO/TiO₂ NF membrane.
Показать больше [+] Меньше [-]Role of AM Fungi in the Uptake and Accumulation of Cd and Ni by Luffa aegyptiaca Полный текст
2019
Kalam, Saqib Ul | Naushin, Fauzia | Bagyaraj, D. J. | Khan, Fareed A.
Sponge gourd (Luffa aegyptiaca) was grown in pots with and without inoculation with two arbuscular mycorrhizal (AM) fungi, viz., Glomus macrocarpum and Glomus monosporum singly and in combination. Seven-day-old plants were treated with 18.9 μg Cd g⁻¹ soil and 155.4 μg Ni g⁻¹ soil alone and in combination. At 90 days old stage, dry weight of root, shoot, and fruit; uptake of heavy metals in root, stem, leaves, and fruits; percent mycorrhizal root colonization; and spore number in the root zone were determined. When applied singly, the uptake of Cd and Ni in host plants was enhanced more effectively by G. monosporum than G. macrocarpum. The larger proportion of Cd uptake in uninoculated host was retained in the roots but in inoculated plants (with both Glomus sp.), major amounts of the Cd were translocated to the above ground parts including fruits. The leaves were the main sinks of Ni in inoculated plants. The overall tissue burden of both heavy metals in the host was enhanced relatively more effectively on association with G. monosporum as compared with G. macrocarpum. The uptake of Cd was relatively higher in plants treated with both the metals and both the AM fungi. Despite the relatively higher uptake of both the heavy metals in inoculated plants, the host dry weight was significantly higher compared with uninoculated plants. The percent mycorrhizal root colonization of the host by both AM fungi was higher in plants grown without either of the heavy metals. The combined application of both the heavy metals reduced the spore density in the root zone soil of host. The results show that the AM fungi enhanced the uptake of Cd and Ni by the host but alleviated the toxicity by promoting plant growth.
Показать больше [+] Меньше [-]