Уточнить поиск
Результаты 2621-2630 из 4,294
Annual variations and effects of temperature on Legionella spp. and other potential opportunistic pathogens in a bathroom
2017
Lu, Jingrang | Buse, Helen | Struewing, Ian | Zhao, Amy | Lytle, Darren | Ashbolt, Nicholas
Opportunistic pathogens (OPs) in drinking water, like Legionella spp., mycobacteria, Pseudomonas aeruginosa, and free-living amobae (FLA) are a risk to human health, due to their post-treatment growth in water systems. To assess and manage these risks, it is necessary to understand their variations and environmental conditions for the water routinely used. We sampled premise tap (N cₒₗd = 26, N ₕₒₜ = 26) and shower (N ₛₕₒwₑᵣ = 26) waters in a bathroom and compared water temperatures to levels of OPs via qPCR and identified Legionella spp. by 16S ribosomal RNA (rRNA) gene sequencing. The overall occurrence and cell equivalent quantities (CE L⁻¹) of Mycobacterium spp. were highest (100 %, 1.4 × 10⁵), followed by Vermamoeba vermiformis (91 %, 493), Legionella spp. (59 %, 146), P. aeruginosa (14 %, 10), and Acanthamoeba spp. (5 %, 6). There were significant variations of OP’s occurrence and quantities, and water temperatures were associated with their variations, especially for Mycobacterium spp., Legionella spp., and V. vermiformis. The peaks observed for Legionella, mainly consisted of Legionella pneumophila sg1 or Legionella anisa, occurred in the temperature ranged from 19 to 49 °C, while Mycobacterium spp. and V. vermiformis not only co-occurred with Legionella spp. but also trended to increase with increasing temperatures. There were higher densities of Mycobacterium in first than second draw water samples, indicating their release from faucet/showerhead biofilm. Legionella spp. were mostly at detectable levels and mainly consisted of L. pneumophila, L. anisa, Legionella donaldsonii, Legionella tunisiensis, and an unknown drinking water isolate based on sequence analysis. Results from this study suggested potential health risks caused by opportunistic pathogens when exposed to warm shower water with low chlorine residue and the use of Mycobacterium spp. as an indicator of premise pipe biofilm and the control management of those potential pathogens.
Показать больше [+] Меньше [-]Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River
2017
Kashyap, Shalini | Dibike, Yonas | Shakibaeinia, Ahmad | Prowse, Terry | Droppo, Ian
Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.
Показать больше [+] Меньше [-]New criteria for the characterization of traditional East Asian papers
2017
Avataneo, Chiara | Sablier, Michel
We report a pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS) method capable of analyzing traditional East Asian papers. The method proposed is based on rapid and easy single step Py-GC/MS analysis that can be carried out with a minimum amount of matter, in the few microgram range. Three reference papers manufactured from kozo (Broussonetia kazinoki Siebold & Zucc.), mitsumata (Edgeworthia chrysantha Lindl.), and gampi (Wikstroemia sikokiana Franch. & Sav.) with the traditional hand paper making processes were examined. The method allows discrimination between terpenic and steroid compounds, which were revealed as chemical markers of origin of the plant fibers. Each paper investigated was found to have characteristic pyrolysis fingerprints that were unique to the traditional handmade paper, demonstrating the potential for differentiation of these biochemical components of fiber plants on East Asian papers towards identification and conservation of cultural heritage. The investigation on Py-GC/MS was extended to liquid extraction followed by GC/MS analysis to characterize the biochemical components of fiber plants. The main contribution of this study is to provide molecular criteria for discriminating plant species used for traditional East Asian hand papermaking. Py-GC/MS complements efficiently microscope identification especially for adverse cases. A case study of archaeological Chinese paper painting artefacts was thereafter successfully investigated to address informative potential and efficiency of the criteria of identification on ancient and degraded East Asian paperworks.
Показать больше [+] Меньше [-]The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013
2017
Wood, Thomas James | Goulson, Dave
Neonicotinoid pesticides were first introduced in the mid-1990s, and since then, their use has grown rapidly. They are now the most widely used class of insecticides in the world, with the majority of applications coming from seed dressings. Neonicotinoids are water-soluble, and so can be taken up by a developing plant and can be found inside vascular tissues and foliage, providing protection against herbivorous insects. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s, several studies raised concerns that neonicotinoids may be having a negative effect on non-target organisms, in particular on honeybees and bumblebees. In response to these studies, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments concluded that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013. The purpose of the present paper is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms. Whilst much of the recent work has focused on the impact of neonicotinoids on bees, a growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.
Показать больше [+] Меньше [-]Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review
2017
Gani, Khalid Muzamil | Tyagi, Vinay Kumar | Kazmi, Absar Ahmad
Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.
Показать больше [+] Меньше [-]Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China
2017
Guo, Hanwen | Duan, Zhenhan | Zhao, Yan | Liu, Yanjun | Mustafa, Muhammad Farooq | Lu, Wenjing | Wang, Hongtao
Transfer station, incineration plant, and landfill site made up the major parts of municipal solid waste disposal system of S city in Eastern China. Characteristics of volatile compounds (VCs) and odor pollution of each facility were investigated from a systematic perspective. Also major index related to odor pollution, i.e., species and concentration of VCs, olfactory odor concentration, and theoretic odor concentration, was quantified. Oxygenated compounds and hydrocarbons were the most abundant VCs in the three facilities. Different chemical species were quantified, and the following average concentrations were obtained: transfer station, 54 VCs, 2472.47 μg/m³; incineration plant, 75 VCs, 33,129.25 μg/m³; and landfill site, 71 VCs, 1694.33 μg/m³. Furthermore, the average olfactory odor concentrations were 20,388.80; 50,677.50; and 4951.17, respectively. The highest odor nuisance was detected in the waste tipping port of the incineration plant. A positive correlation between the olfactory and chemical odor concentrations was found with R ² = 0.918 (n = 15, P < 0.01). The result shows odor pollution risk transfer from landfill to incineration plant when adopting thermal technology to deal with the non-source-separated waste. Strong attention thus needs to be paid on the enclosed systems in incineration plant to avoid any accidental odor emission.
Показать больше [+] Меньше [-]Contribution of urban runoff in Taipei metropolitan area to dissolved inorganic nitrogen export in the Danshui River, Taiwan
2017
Kuo, Nae-Wen | Jien, Shih-Hao | Hong, Nien-Ming | Chen, Yao-Te | Lee, Tsung-Yu
A previous study has demonstrated that Danshui River has almost the highest dissolved inorganic nitrogen (DIN) yield in the world and exports most of the DIN in the form of ammonium unlike the world’s large rivers. However, the DIN sources are poorly constrained. In this study, the contributions of major sources in the Taipei metropolitan area to the DIN export in the Danshui River were investigated. It is observed that ammonium is the major DIN species in the downstream reaches, resulting from the ammonium-dominated inputs of the effluents of wastewater treatment plants (WWTP) and rain water pumping stations (RWPS). DIN concentrations in the downstream (urban) reaches are substantially elevated. The upstream tributaries annually discharge ∼2709 t DIN to the downstream reaches. However, the DIN discharge off the downstream reaches rises to ∼17,918 t, resulting from the contribution of RWPS-collected water, i.e., ∼14,632 t, and the effluents of two WWTP, i.e., ∼577 t. RWPS-collected water inherently contains the contribution of atmospheric deposition, ∼2937 t DIN. This finding implies that ∼11,695 t (∼66 % of the downstream output) DIN flux off the Danshui River is from urban runoff and can be attributed to human activities in the Taipei metropolitan area. To improve the water quality in the Danshui River, water quality controls in urban runoff are important.
Показать больше [+] Меньше [-]Tailor-made biocatalysts based on scarcely studied acidic horseradish peroxidase for biodegradation of reactive dyes
2017
Janović, Barbara S. | Mićić Vićovac, Milica Lj | Vujčić, Zoran M. | Vujčić, Miroslava T.
Peroxidases (EC 1.11.1.7) have enormous biotechnological applications. Usage of more abundant, basic isoforms of peroxidases in diagnostic kits and/or in immunochemistry has led to under exploitation and disregard of horseradish peroxidase (HRP) acidic isoforms. Therefore, acidic horseradish peroxidase (HRP-A) isoenzyme was used for the preparation of a biocatalyst with improved ability in dye decolorization. Ten biocatalysts were prepared by covalent binding of enzyme to chitosan and alginate, adsorption followed by cross-linking on inorganic support (aluminum oxide), and encapsulation in spherical calcium alginate beads via polyethylene glycol. Model dyes of 50 to 175 mg l⁻¹ were removed by the biocatalysts. Among the tested biocatalysts, the three with the highest specific activity and biodegradation rate were further studied (Chitosan-HRP, Al-Gel-HRP and Al-HRP-Gel). The impact of hydrogen peroxide concentration on dye decolorization was examined on the Chitosan-HRP biocatalyst, since the HRP is susceptible to inhibition/inactivation by high H₂O₂. On the other hand, H₂O₂ is needed as a co-substrate for the HRP, and the H₂O₂/dye ratio can greatly influence decolorization efficiency. Concentrations of H₂O₂ ranging from 0.22 to 4.4 mM showed no difference in terms of impact on the biocatalyst decolorization efficiency. The high decolorization efficiency of the biocatalysts was validated by the removal of 25 and 100 mg l⁻¹ anthraquinone (Remazol Brilliant Blue R (RBBR)), triphenylmethane (Coomassie Brilliant Blue (CBB)), acridine (Acridine Orange (AO)), and formazan metal complex dye (Reactive Blue 52 (RB52)). After the seven consecutive decolorization cycles, the decolorization was still 53, 78, and 67% of the initial dye for the Al-HRP-Gel, Al-Gel-HRP, and Chitosan-HRP immobilizate, respectively. The results obtained showed potential of otherwise neglected acidic HRP isoforms as a cost-effective biocatalyst with significant potential in wastewater dyestuff treatment.
Показать больше [+] Меньше [-]Diazinon dissipation in pesticide-contaminated paddy soil: kinetic modeling and isolation of a degrading mixed bacterial culture
2017
Torabi, Ehssan | Talebi, Khalil | Pourbabaei, AhmadAli | Ahmadzadeh, Masoud
Dissipation kinetics of diazinon was investigated in soils culled from a paddy field with a long history of the pesticide application. Goodness of fit statistical indices derived from several fitted mono- and bi-exponential kinetic models revealed a bi-phasic pattern of the diazinon dissipation curve at 15 and 150 mg kg⁻¹ spiking levels, which could be described best by the first-order double exponential decay (FODED) model. Parameters obtained from this model were able to describe the enhanced dissipation of diazinon as the result of repeated soil applications, where a larger fraction of the pesticide readily available in the solution phase was dissipated with a fast rate. Cluster and principal component analysis (PCA) of denaturing gradient gel electrophoresis (DGGE) obtained from soil bacterial populations revealed that they were only affected at the 150 mg kg⁻¹ diazinon concentration. This was also supported by the phylogenetic tree obtained from sequences of the main gel bands. Accordingly, bacterial populations belonging to Proteobacteria were enriched in the soil following three treatments with diazinon at 150 mg kg⁻¹. The Shannon’s index revealed a nonsignificant increase (P ≤ 0.05) in overall diversity of soil bacteria following diazinon application. Diazinon-degrading bacteria were isolated from the paddy soils in a mineral salt medium. Results showed that the isolated mixed culture was able to remove 90% of the pesticide at two concentrations of 50 and 100 mg L⁻¹ by 16.81 and 19.60 days, respectively. Sequencing the DGGE bands confirmed the role of Betaproteobacteria as the main components of the isolated mixed culture in the degradation of diazinon.
Показать больше [+] Меньше [-]Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body
2017
Song, Yu-Zhi | Jin, Zhongda | Gao, Yong-Xia
The disappearance of submerged vascular macrophytes in shallow eutrophic lakes is a common phenomenon in the world. To explore the mechanism of the decline in submerged macrophyte abundance due to the growth of epiphytic algae along a nutrient gradient in eutrophic water, a 2 × 3 factorial experiment was performed over 4 weeks with the submerged macrophyte (Myriophyllum spicatum L.) by determining the plant’s biomass and some physiological indexes, such as chlorophyll (Chl) content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in the leaves of M. spicatum L. on days 7, 14, 21, and 28, which are based on three groups of nitrogen and phosphorus levels in the water body (N-P [mg L⁻¹]: NP1 0.5–0.05, NP2 2.5–0.25, NP3 4.5–0.45) and two levels of epiphytic algae (the epiphytic algae group and the control group). Epiphytic algal biomass was also assayed. The results indicated that epiphytic algal biomass remarkably enhanced in the course of the experiment with elevated levels of nitrogen and phosphorus in the water. Under the same level of nutrient condition, plants’ biomass accumulation and Chl content were higher in the control group than that in the epiphytic algae group, respectively, while MDA content and SOD activity in the former were lower than that in the latter. The influences of epiphytic algae on the biomass accumulation and Chl content and MDA content became greater and greater with elevated levels of nutrients. In general, in this experiment, water nutrients promoted the growth of both epiphytic algae and submerged plants, while the growth of epiphytic algae hindered submerged macrophytes’ growth by reducing Chl content and promoting peroxidation of membrane lipids in plants.
Показать больше [+] Меньше [-]