Уточнить поиск
Результаты 2631-2640 из 4,294
Monitoring of selected pharmaceuticals in surface waters of Croatia
2017
Ivešić, Martina | Krivohlavek, Adela | Žuntar, Irena | Tolić, Sonja | Šikić, Sandra | Musić, Valerija | Pavlić, Ivan | Bursik, Andrea | Galić, Nives
Sulfonamides, macrolides, torasemide, fumagillin, and chloramphenicol were simultaneously analyzed in surface water samples by using solid-phase extraction (SPE) and reversed-phase (RP) liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS). In the pre-concentration and clean-up process, the pH value of samples and volume of the solvent for extraction of analytes from cartridge were optimized. Extraction recoveries were high with values in the range from 62 to 115%. Limits of quantification (LoQ) were in the range from 0.02 to 0.2 μg L⁻¹. Repeatability of the method was evaluated at LoQ and expressed as relative standard deviation (RSD). Calculated RSDs were low with values in the range from 2.4 to 14.5%. The method was successfully applied for analysis of surface water real samples. Samples were collected along the rivers in Croatia on four sampling sites in 2012 in Danube catchment areas, 19 sampling sites in Danube and Adriatic catchment areas in 2013, and another 19 places in 2014. Altogether, 20 target compounds were analyzed in 148 water samples and detected in 31 samples in range (0.1–5.3) μg L⁻¹ or in 20.1% of samples. The most frequent and highest concentrations were detected for macrolide antibiotics. This is the first attempt of such monitoring in surface waters in Croatia.
Показать больше [+] Меньше [-]Benchmarking the scientific research on wastewater-energy nexus by using bibliometric analysis
2017
Zheng, Tianlong | Li, Pengyu | Shi, Zhining | Liu, Jianguo
With an exponential increase in urbanization and industrialization, water pollution is an inevitable consequence of relatively lagging wastewater treatment facilities. The conventional activated sludge process for wastewater treatment primarily emphasizes the removal of harmful substances to maintain increasingly stringent effluent discharged standards, which is considered an energy-intensive technique. Therefore, innovative and sustainable wastewater treatment should pay more attention to energy and resource recovery in dealing with fossil fuel depletion, global-scale energy security, and climate change. A bibliometric analysis was applied to trace wastewater-energy nexus-related research during the period 1991 to 2015, with respect to the Science Citation Index EXPANDED (SCI-EXPANDED) database. Journal of Hazardous Materials, ranking 1st in h-index (79), was the most productive journal (431, 4.5%) during the same time, followed by International Journal of Hydrogen Energy (422, 4.4%) and Water Research (393, 4.1%) journal, the latter owning a topmost journal impact factor. Though, China (2154, 22.5%) was the most productive country, while the USA with highest h-index (88) was the favorest collaborative country. The Chinese Academy of Sciences, China (241, 2.5%) produced the maximum publications. A novel method called “word cluster analysis” showed that the emerging sustainable processes and novel renewable energy application are applied in response to the desire for a net wastewater-energy nexus system. Based on different wastewater types, the emerging energy and sources recovery treatment processes of Anammox, anaerobic digestion, and microbial fuel cells gained extensive innovation. Evaluation indicators including sustainability, life cycle assessment, and environmental impact were appropriately used to dissert feasibility of the novel treatment methods in regard of renewable energy utilization, energy savings, and energy recovery. The transformation of the new concept of “broaden income source, economize on expenditures and exploit inner potential” should be generalized in order to achieve an environmentally sustainable development of wastewater-energy nexus system.
Показать больше [+] Меньше [-]Recycling of palm oil industrial wastes using vermicomposting technology: its kinetics study and environmental application
2017
Rupani, Parveen Fatemeh | Embrandiri, Asha | Ibrahim, Mahamad Hakimi | Shahadat, Mohammad | Hansen, Sune Balle | Ismail, Sultan Ahmed | Ab. Kadir, Mohd Omar
The present paper reports management of palm oil mill effluent (POME) mixed with palm-pressed fibre (PPF) POME-PPF mixture using eco-friendly, cost-effective vermicomposting technology. Vermicomposting of POME-PPF was performed to examine the optimal POME-PPF ratio with respect to the criteria of earthworm biomass and to evaluate the decomposition of carbon and nitrogen in different percentages of POME-PPF mixtures. Chemical parameters such as TOC, N, P and K contents were determined to achieve optimal decomposition of POME-PPF. On this basis, the obtained data of 50% POME-PPF mixture demonstrated more significant results throughout the experiment after addition of the earthworms. However, 60 and 70% mixtures found significant only in the last stages of the vermicomposting process. The decomposition rate in terms of -ln (CNₜ/CNₒ) showed that the 50% mixture has higher decomposition rate as compared to the 60 and 70% (k50% = 0.0498 day⁻¹). The vermicomposting extracts (50, 60 and 70%) of POME-PPF mixtures were also tested to examine the growth of mung bean (Vigna radiata). It was found that among different extract dilutions, 50% POME-PPF vermicompost extract provided longer root and shoot length of mung bean. The present study concluded that the 50% mixture of POME-PPF could be chosen as the optimal mixture for vermicomposting in terms of both decomposition rate and fertilizer value of the final compost. Graphical abstract ᅟ
Показать больше [+] Меньше [-]Preparation, characterization, and application of ZnO@SiO2 core–shell structured catalyst for photocatalytic degradation of phenol
2017
Galedari, Naghmeh Abuali | Rahmani, Mohammad | Tasbihi, Minoo
In the current study, ZnO@SiO₂ core–shell structured catalyst was synthesized for photocatalytic degradation of phenol from aqueous samples. The synthesized catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, energy-dispersive X-ray spectroscopy, UV–Vis–NIR diffuse reflectance spectroscopy, transmission electron microscopy, BET surface area, zeta potential, and field emission scanning electron microscopy. The effect of catalyst loading, initial phenol concentration, pH, UV light intensity and weight ratio of ZnO/(SiO₂ + ZnO) were studied towards photocatalytic degradation of phenol. Moreover, photocatalytic activities of bare ZnO and ZnO@SiO₂ were compared. The results advocated that ZnO@SiO₂ catalyst showed high photocatalytic performance for degradation of phenol (96 % after 120 min) at an initial pH of 5.9, catalyst loading of 0.5 g/L and initial phenol concentration of 25 mg/L. Increase in the weight ratio of ZnO/(SiO₂ + ZnO) from 0.2 to 0.33 significantly enhanced the photodegradation of phenol from 84 to 94 %. It was also found that photocatalytic activity of ZnO@SiO₂ was higher than bare ZnO nanoparticles. Graphical abstract ᅟ
Показать больше [+] Меньше [-]Sociopolitical and economic elements to explain the environmental performance of countries
2017
Almeida, Thiago Alexandre das Neves | García Sánchez, Isabel María
The present research explains environmental performance using an ecological composite index as the dependent variable and focusing on two national dimensions: sociopolitical characteristics and economics. Environmental performance is measured using the Composite Index of Environmental Performance (CIEP) indicator proposed by García-Sánchez et al. (2015). The first model performs a factor analysis to aggregate the variables according to each analyzed dimension. In the second model, the estimation is run using only single variables. Both models are estimated using generalized least square estimation (GLS) using panel data from 152 countries and 6 years. The results show that sociopolitical factors and international trade have a positive effect on environmental performance. When the variables are separately analyzed, democracy and social policy have a positive effect on environmental performance while transport, infrastructure, consumption of goods, and tourism have a negative effect. Further observation is that the trade-off between importing and exporting countries overshadows the pollution caused by production. It was also observed that infrastructure has a negative coefficient for developing countries and positive for developed countries. The best performances are in the democratic and richer countries that are located in Europe, while the worst environmental performance is by the nondemocratic and the poorest countries, which are on the African continent.
Показать больше [+] Меньше [-]Preparation, characterization, and testing of metal-doped carbon xerogels as catalyst for phenol CWAO
2017
Pleşa Chicinaş, Raluca | Coteţ, L Cosmin | Măicăneanu, Andrada | Vasilescu, Mihai | Vulpoi, Adriana
Co-, Ce-, and Ni-doped carbon xerogels (Me-CX) synthesized by sol-gel method followed by an ion exchange process were used as catalysts for catalytic wet air oxidation (CWAO) of phenol. The prepared catalysts were characterized using TEM, SEM, BET surface area, and XRD. Me-CX catalysts were tested in mild conditions (20–60 °C, atmospheric pressure) in a semi-batch reactor in various reaction conditions (30–60 L/h, 0.05–0.2 g catalysts, 50–175 mg phenol/L). Total organic carbon (TOC) removal efficiency values obtained decrease in the following order Co-CX ≅ Ce-CX > Ni1-CX > K-CX for the catalysts obtained using the same procedure. TOC removal efficiencies of up to 72% were reached in case of Co-CX catalyst at 20 °C, 40 L/h, using 0.15 g catalyst and a solution of 100 mg phenol/L.
Показать больше [+] Меньше [-]A preliminary report of indigenous fungal isolates from contaminated municipal solid waste site in India
2017
Awasthi, Abhishek Kumar | Pandey, Akhilesh Kumar | Khan, Jamaluddin
Municipal solid waste (MSW) containing harmful substances is a major concern in waste management and can cause adverse effects on diversity of fungi in soil. The main objective was to evaluate the fungal diversity inhabiting in the soil nearby MSW disposal site. The fungal strains were isolated in potato dextrose agar (PDA), media at temperatures 28 ± 1 °C by using standard serial dilution pour plate method, and appeared fungal colonies identified based on morphological characteristics. The overall most fungal diversity was found in soil sample collected from S5, followed by S4, S3, S1, and least in S2 site. A total of 24 fungal isolates recovered from the different MSW sites and Aspergillus sp., Fusarium sp., and Curvularia sp. genus has isolated from all the samples. In addition, the metal tolerance index performed because it needs to classify the fungus for their best use as potential agent for environmental protection. The metal tolerance outcomes revealed that both metals (cadmium and chromium) has appeared as the highest growth inhibitor for most strains and even fungal colonies did not propagate very well on the surface of media. Therefore, these findings suggest that the pre-adapted indigenous fungal isolates have proven remarkable tolerance ability to both metals. Furthermore, these highly metal-tolerant fungal strains are recommended for detail research or can use in pilot-scale bioremediation application to treat contaminated site.
Показать больше [+] Меньше [-]Influence of dissolved organic matter and oil on the biosorption of BTEX by macroalgae in single and multi-solute systems
2017
Rodriguez-Hernandez, MayraCecilia | Flores-Chaparro, CarlosE. | Rangel-Mendez, JoseRene
The effect of dissolved organic matter (DOM) and oil on the removal of the water-soluble compounds benzene, toluene, ethylbenzene, and xylene isomers (BTEX) by two low-cost biosorbents Macrocystis pyrifera and Ulva expansa) was evaluated. DOM decreased the adsorption capacity of toluene, ethylbenzene, and xylenes of the two biosorbents. In contrast, the removal of benzene increased under the same conditions in single and multi-solute systems: this effect was dominant in U. expansa biomass treatments. In the presence of DOM and oil in solutions, the removal of BTEX notoriously increased, being oil that contributed the most. Solubility and hydrophobicity of pollutants played a key role in the adsorption process. The attractions between BTEX molecules and biosorbents were governed by π–π and hydrophobic interactions. Affinities of biosorbents for BTEX were mainly in the order of X > E > T > B. The Langmuir and Sips equations adjusted the adsorption isotherms for BTEX biosorption in deionized and natural water samples, but in the case of oily systems, the Freundlich equation seemed to have a better fit. The biosorption processes followed a pseudo-second-order rate in all the cases.
Показать больше [+] Меньше [-]Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia
2017
Batsaikhan, Bayartungalag | Kwon, Jang-Soon | Kim, Kyoung-Ho | Lee, Young-Joon | Lī, Jaṅga Ho | Badarch, Mendbayar | Yun, Seong-Taek
Although metallic mineral resources are most important in the economy of Mongolia, mining activities with improper management may result in the pollution of stream waters, posing a threat to aquatic ecosystems and humans. In this study, aiming to evaluate potential impacts of metallic mining activities on the quality of a transboundary river (Selenge) in central northern Mongolia, we performed hydrochemical investigations of rivers (Tuul, Khangal, Orkhon, Haraa, and Selenge). Hydrochemical analysis of river waters indicates that, while major dissolved ions originate from natural weathering (especially, dissolution of carbonate minerals) within watersheds, they are also influenced by mining activities. The water quality problem arising from very high turbidity is one of the major environmental concerns and is caused by suspended particles (mainly, sediment and soil particles) from diverse erosion processes, including erosion of river banks along the meandering river system, erosion of soils owing to overgrazing by livestock, and erosion by human activities, such as mining and agriculture. In particular, after passing through the Zaamar gold mining area, due to the disturbance of sediments and soils by placer gold mining, the Tuul River water becomes very turbid (up to 742 Nephelometric Turbidity Unit (NTU)). The Zaamar area is also the contamination source of the Tuul and Orkhon rivers by Al, Fe, and Mn, especially during the mining season. The hydrochemistry of the Khangal River is influenced by heavy metal (especially, Mn, Al, Cd, and As)-loaded mine drainage that originates from a huge tailing dam of the Erdenet porphyry Cu-Mo mine, as evidenced by δ³⁴S values of dissolved sulfate (0.2 to 3.8 ‰). These two contaminated rivers (Tuul and Khangal) merge into the Orkhon River that flows to the Selenge River near the boundary between Mongolia and Russia and then eventually flows into Lake Baikal. Because water quality problems due to mining can be critical, mining activities in central northern Mongolia should be carefully managed to minimize the transboundary movement of aquatic contaminants (in particular, turbidity, dissolved organic carbon, Fe and Al) from mining activities.
Показать больше [+] Меньше [-]Occurrence and behavior of selected pharmaceuticals during riverbank filtration in The Republic of Serbia
2017
Kovačević, Srđan | Radišić, Marina | Laušević, Mila | Dimkic, Milan
The objectives of the research are to determine the occurrence of pharmaceuticals in surface water and groundwater in the Republic of Serbia and to identify significant effects of river-water purification through riverbank filtration, concerning oxic conditions and hydrogeological conditions of alluvial aquifers in Serbia. Between 2009 and 2015, a total of 19 studied pharmaceuticals and metabolites were analyzed in 184 samples, 10 were detected in surface water, and 8 in groundwater. Carbamazepine and metamizole metabolites N-acetyl-4-amino-antipyrine (4-AAA) and N-formyl-4-amino-antipyrine (4-FAA) have the highest frequency of occurrence in surface water (57.3–68.8 %) and in groundwater (19.5–43.9 %), respectively. Highest detected concentrations were for 4-AAA (520 ng/L) and 4-FAA (248 ng/L) in surface water as well as in groundwater (4-AAA 128 ng/L and 4-FAA 150 ng/L). Results showed that riverbank filtration sites with different hydrogeological and oxic conditions could significantly remove investigated pharmaceuticals. Percentage of removal during riverbank filtration was determined for carbamazepine (65.4 %), trimethoprim (100 %), 4-AAA (91.2 %), and 4-FAA (70 %) for all investigated locations. Based on the available data for three specific locations (Danube River alluvion, Sava River alluvion, and Velika Morava River alluvion), results showed that besides oxic conditions, residence time of groundwater in alluvial aquifer and ratio of infiltrated water from river to the well play very important role in the quality of groundwater. These results are extremely important for better understanding of self-purification potential of alluvial aquifers and protection from potential impacts of anthropogenic pollution to the groundwater sources in the Republic of Serbia.
Показать больше [+] Меньше [-]