Уточнить поиск
Результаты 271-280 из 4,291
Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata blume seedlings grown under different soil nutrient conditions
2017
Kinose, Yoshiyuki | Fukamachi, Yoshinobu | Okabe, Shigeaki | Hiroshima, Hiroka | Watanabe, Makoto | Izuta, Takeshi
We aimed to clarify the effects of ozone (O3) on photosynthetic ability of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions. To accomplish this objective, we analyzed the response of photosynthetic parameters such as maximum carboxylation rate (Vcmax) to cumulative stomatal O3 uptake (ΣFst) and reduction rate of Vcmax per unit ΣFst as an index of detoxification capacity for O3. The seedlings of Fagus crenata were grown for two growing seasons (2014–2015) in nine treatments comprised of a combination of three levels of gas treatments (charcoal-filtered air or 1.0- or 1.5-times ambient O3 concentration) and three levels of soil nutrient treatments (non-fertilized or a supply of relatively low or high concentrations of compound fertilizer). The nutrient supply significantly increased the degree of O3-induced reduction in Vcmax in September. However, nutrient supply did not significantly increase ΣFst and reduce the detoxification capacity for O3. On the other hand, the degree of O3-induced reduction in Vcmax of upper canopy leaves was higher as compared with that of lower canopy leaves in August due to the higher ΣFst. However, the reduction rate of Vcmax per unit ΣFst in lower canopy leaves was higher than that in upper canopy leaves, indicating lower detoxification capacity for O3 in lower canopy leaves. Reduction rate of Vcmax per unit ΣFst over the threshold, which is assumed to be proportional to gross photosynthetic rate, was similar between upper and lower canopy leaves. Therefore, capacity of photosynthetic CO2 assimilation is likely to be associated with detoxification capacity for O3 in upper and lower canopy leaves of F. crenata seedlings grown under different soil nutrient conditions.
Показать больше [+] Меньше [-]Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy
2017
Ji, Ying | Sarret, Géraldine | Schulin, R. (Rainer) | Tandy, Susan
Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils.
Показать больше [+] Меньше [-]Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions
2017
Ochoa-Hueso, Raúl | Munzi, Silvana | Alonso, Rocío | Arróniz-Crespo, María | Avila, Anna | Bermejo, Victoria | Bobbink, Roland | Branquinho, Cristina | Concostrina Zubiri, Laura | Cruz Mínguez, Cristina | Cruz de Carvalho, Ricardo | De Marco, Alessandra | Dias, Teresa | Elustondo, David | Elvira, Susana | Estébanez, Belén | Fusaro, Lina | Gerosa, Giacomo | Izquieta-Rojano, Sheila | Lo Cascio, Mauro | Marzuoli, Riccardo | Matos, Paula | Mereu, Simone | Merino, José | Morillas, Lourdes | Nunes, Alice | Paoletti, Elena | Paoli, Luca | Pinho, Pedro | Rogers, Isabel B. | Santos, Arthur | Sicard, Pierre | Stevens, Carly J. | Theobald, Mark R.
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.
Показать больше [+] Меньше [-]Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils
2017
Huang, Junxing | Liang, Chuanzhou | Zhang, Xu
The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO2. The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO2. The adsorption of racemic-metalaxyl on SiO2 decreased to some extent in soil-SiO2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO2 in soil-SiO2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO2 in the presence of soil. Interactions between SiO2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO2, and the interactions were analyzed by extended Derjaguin–Landau–Verwey–Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions.
Показать больше [+] Меньше [-]Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil
2017
Schneider, Jerusa | Bundschuh, Jochen | Rangel, Wesley de Melo | Guilherme, Luiz Roberto Guimarães
Arbuscular mycorrhizal (AM) fungi inoculation is considered a potential biotechnological tool for an eco-friendly remediation of hazardous contaminants. However, the mechanisms explaining how AM fungi attenuate the phytotoxicity of metal(oid)s, in particular arsenic (As), are still not fully understood. The influence of As on plant growth and the antioxidant system was studied in Leucaena leucocephala plants inoculated with different isolates of AM fungi and exposed to increasing concentrations of As (0, 35, and 75 mg dm⁻³) in a Typic Quartzipsamment soil. The study was conducted under greenhouse conditions using isolates of AM fungi selected from uncontaminated soils (Acaulospora morrowiae, Rhizophagus clarus, Gigaspora albida; and a mixed inoculum derived from combining these isolates, named AMF Mix) as well as a mix of three isolates from an As-contaminated soil (A. morrowiae, R. clarus, and Paraglomus occultum). After 21 weeks, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were determined in the shoots in addition to measuring plant height and mineral contents. In general, AM fungi have shown multiple beneficial effects on L. leucocephala growth. Although the activity of most of the stress-related enzymes increased in plants associated with AM fungi, the percentage increase caused by adding As to the soil was even greater for non-mycorrhizal plants when compared to AM-fungi inoculated ones, which highlights the phytoprotective effect provided by the AM symbiosis. The highest P/As ratio observed in AM-fungi plants, compared to non-mycorrhizal ones, can be considered a good indicator that the AM fungi alter the pattern of As(V) uptake from As-contaminated soil. Our results underline the role of AM fungi in increasing the tolerance of L. leucocephala to As stress and emphasize the potential of the symbiosis L. leucocephala-R. clarus for As-phytostabilization at moderately As-contaminated soils.
Показать больше [+] Меньше [-]Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field
2017
ur Rehman, Muhammad Zia | Khalid, Hinnan | Akmal, Fatima | Ali, Shafaqat | Rizwan, Muhammad | Qayyum, Muhammad Farooq | Iqbal, Muhammad | Khalid, Muhammad Usman | Azhar, Muḥammad
Cadmium (Cd) uptake and accumulation in crop plants, especially in wheat (Triticum aestivum) and rice (Oryza sativa) is one of the main concerns for food security worldwide. A field experiment was done to investigate the effects of limestone, lignite, and biochar on growth, physiology and Cd uptake in wheat and rice under rotation irrigated with raw effluents. Initially, each treatment was applied alone at 0.1% and combined at 0.05% each and wheat was grown in the field and then, after wheat harvesting, rice was grown in the same field without additional application of amendments. Results showed that the amendments applied increased the grain and straw yields as well as gas exchange attributes compared to the control. In both crops, highest Cd concentrations in straw and grains and total uptake were observed in control treatments while lowest Cd concentrations was observed in limestone + biochar treatment. No Cd concentrations were detected in wheat grains with the application of amendments except limestone (0.1%). The lowest Cd harvest index was observed in limestone + biochar and lignite + biochar treatments for wheat and rice respectively. Application of amendments decreased the AB-DTPA extractable Cd in the soil while increasing the Cd immobilization index after each crop harvest. The benefit-cost ratio and Cd contents in plants revealed that limestone + biochar treatment might be an effective amendment for increasing plant growth with lower Cd concentrations.
Показать больше [+] Меньше [-]The well sorted fine sand community from the western Mediterranean Sea: A resistant and resilient marine habitat under diverse human pressures
2017
Dauvin, Jean-Claude | Bakalem, Ali | Baffreau, Alexandrine | Delecrin, Claire | Bellan, Gérard | Lardicci, Claudio | Balestri, Elena | Sardá, Rafael | Grimes, Samir
The Biocoenosis of Well Sorted Fine Sands (WSFS) (SFBC, Sables Fins Bien Calibrés in French) is a Mediterranean community very well delimited by bathymetry (2–25 m) and sedimentology (>90% of fine sand) occurring in zones with relatively strong hydrodynamics. In this study focused on sites located along the Algerian, French, Italian and Spanish coasts of the Western Basin of the Mediterranean Sea (WBMS) we aim to compare the structure, ecological status and diversity of the macrofauna of the WSFS and examine the effects of recent human pressures on the state of this shallow macrobenthic community. We assess the ecological status and functioning of these WSFS using three categories of benthic indices: a) five indices based on classification of species into ecological groups, AMBI, BO2A, BPOFA, IQ and IP, b) the ITI index based on classification of species in trophic groups, and c) the Shannon H’ index, and the Biological Traits Analysis (BTA), which is an alternative method to relative taxon composition analysis and integrative indices. Cluster analyses show that each zone show a particular taxonomic richness and dominant species. The seven benthic indices reveal that the macrobenthos of the WSFS of the four coastal zones show good or high Quality Status, except for one location on the Algerian coast (the Djendjen site) in 1997. BTA highlights the presence of three groups of species: 1) typical characteristic species; 2) indicator species of enrichment of fine particles and organic matter, and 3) coarse sand species which are accessorily found on fine sand. Finally, the WSFS which are naturally subject to regular natural physical perturbations show a high resilience after human pressures but are very sensitive to changes in the input of organic matter.
Показать больше [+] Меньше [-]Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures
2017
Calvete-Sogo, H. | González Fernández, I. | García-Gómez, H. | Alonso, R. | Elvira, S. | Sanz, J. | Bermejo-Bermejo, V.
Ozone (O3) critical levels (CLe) are still poorly developed for herbaceous vegetation. They are currently based on single species responses which do not reflect the multi-species nature of semi-natural vegetation communities. Also, the potential effects of other factors like the nitrogen (N) input are not considered in their derivation, making their use uncertain under natural conditions.Exposure- and dose-response relationships were derived from two open-top chamber experiments exposing a mixture of 6 representative annual Mediterranean pasture species growing in natural soil to 4 O3 fumigation levels and 3 N inputs. The Deposition of O3 and Stomatal Exchange model (DO3SE) was modified to account for the multi-species nature of the canopy following a big-leaf approach. This new approach was used for estimating a multi-species phytotoxic O3 dose (PODy-MS). Response relationships were derived based on O3 exposure (AOT40) and flux (PODy-MS) indices.The treatment effects were similar in the two seasons: O3 reduced the aboveground biomass growth and N modulated this response. Gas exchange rates presented a high inter-specific variability and important inter-annual fluctuations as a result of varying growing conditions during the two years. The AOT40-based relationships were not statistically significant except when the highest N input was considered alone. In contrast, PODy-MS relationships were all significant but for the lowest N input level. The influence of the N input on the exposure- and dose-response relationships implies that N can modify the O3 CLe. However, this is an aspect that has not been considered so far in the methodologies for establishing O3 CLe. Averaging across N input levels, a multi-species O3 CLe (CLef-MS) is proposed POD1-MS = 7.9 mmol m⁻², accumulated over 1.5 month with a 95% confidence interval of (5.9, 9.8). Further efforts will be needed for comparing the CLef-MS with current O3 CLef based on single species responses.
Показать больше [+] Меньше [-]Bioconcentration of polycyclic musks in fathead minnows caged in a wastewater effluent plume
2017
Lefebvre, Claudine | Kimpe, Linda E. | Metcalfe, Christopher D. | Trudeau, Vance L. | Blais, Jules M.
The synthetic polycyclic musks HHCB (Galaxolide®) and AHTN (Tonalide®) were monitored in fathead minnows (FHMs) caged for a month at various locations in the North Saskatchewan River (NSR), upstream and downstream of the Gold Bar wastewater treatment plant that serves the city of Edmonton, AB, Canada. In addition, the distribution of these musk compounds in the river was predicted using the fugacity-based Quantitative Water Air Sediment Interface (QWASI) model. In FHMs caged 0.15 km downstream of the wastewater outfall, mean concentrations of HHCB and AHTN were 7.4 and 0.4 μg g−1 wet weight, respectively. These are among the highest reported concentrations of these musk compounds in fish exposed to treated wastewater. The musk concentrations in FHMs were significantly lower further downstream of the outfall. High bioconcentration factors (BCFs) in FHMs that exceeded 104 higher than estimated concentrations in water indicated that there were low rates of biotransformation of the musks in the fish. In the FHMs caged at the site closest to the wastewater outfall, HHCB concentrations in FHMs were comparable to the body burdens that have been reported to moderate expression of vitellogenin in female rainbow trout, indicating that fish in the NSR downstream of the wastewater outfall may be at risk of anti-estrogenic effects. The QWASI model applied to six individual river sections of the NSR predicted that the largest fluxes of HHCB and AHTN would be for downstream transport in water, which explains why FHMs accumulated elevated concentrations of the musks at the furthest downstream site, 9.9 km from the wastewater discharge.
Показать больше [+] Меньше [-]Health conditions in rural areas with high livestock density: Analysis of seven consecutive years
2017
van Dijk, Christel E. | Zock, Jan-Paul | Baliatsas, Christos | Smit, Lidwien A.M. | Borlée, Floor | Spreeuwenberg, Peter | Heederik, Dick | Yzermans, C Joris
Previous studies investigating health conditions of individuals living near livestock farms generally assessed short time windows. We aimed to take time-specific differences into account and to compare the prevalence of various health conditions over seven consecutive years. The sample consisted of 156,690 individuals registered in 33 general practices in a (rural) area with a high livestock density and 101,015 patients from 23 practices in other (control) areas in the Netherlands. Prevalence of health conditions were assessed using 2007–2013 electronic health record (EHR) data. Two methods were employed to assess exposure: 1) Comparisons between the study and control areas in relation to health problems, 2) Use of individual estimates of livestock exposure (in the study area) based on Geographic Information System (GIS) data. A higher prevalence of chronic bronchitis/bronchiectasis, lower respiratory tract infections and vertiginous syndrome and lower prevalence of respiratory symptoms and emphysema/COPD was found in the study area compared with the control area. A shorter distance to the nearest farm was associated with a lower prevalence of upper respiratory tract infections, respiratory symptoms, asthma, COPD/emphysema, allergic rhinitis, depression, eczema, vertiginous syndrome, dizziness and gastrointestinal infections. Especially exposure to cattle was associated with less health conditions. Living within 500m of mink farms was associated with increased chronic enteritis/ulcerative colitis. Livestock-related exposures did not seem to be an environmental risk factor for the occurrence of health conditions. Nevertheless, lower respiratory tract infections, chronic bronchitis and vertiginous syndrome were more common in the area with a high livestock density. The association between exposure to minks and chronic enteritis/ulcerative colitis remains to be elucidated.
Показать больше [+] Меньше [-]