Уточнить поиск
Результаты 281-290 из 7,995
Migration mechanism and risk assessment of chlorinated paraffins in highly polluted Ya’Er lake area, China Полный текст
2021
Li, Chang | Chen, Lufeng | He, Yujian | Liang, Yong | Wang, Yingjun | Li, Feifei | Gao, Wei | Wang, Yawei | Jiang, Guibin
Chlorinated paraffins (CPs), a type of toxic and persistent organic substances, can persist in environmental media for a long time and have adverse effects on human health. Thus, it is of great importance to investigate the accumulation and environmental behavior of CPs in industrial areas. In this study, farmland soil, water, and sediment core samples from abandoned oxidation ponds used by three chemical plants to treat wastewater over the past 38 years were investigated in detail. Results show that the concentration of CPs in sediments varied significantly with the water flow direction. The oxidation pond closest to a sewage outlet had the highest concentrations of short-chain chlorinated paraffin (SCCPs) and medium-chain chlorinated paraffin (MCCPs), within the ranges of 44.0–6.21 × 10⁴ ng/g dw (mean 9.32 × 10³ ng/g dw) and 143–1.30 × 10⁶ ng/g dw (mean 1.22 × 10⁵ ng/g dw), respectively. However, in the oxidation pond farthest from the sewage outlet, CP concentrations in sediments were significantly reduced, with ∑SCCPs and ∑MCCPs concentrations ranging from N.D.-249 ng/g dw (mean 66.8 ng/g dw) and N.D.-222 ng/g dw (mean 34.0 ng/g dw), respectively. Moreover, MCCP level in the water was below the detection limit, while the concentration of SCCP ranged from 41.0 to 1.53 × 10³ ng/L (mean 267 ng/L). Finally, a remarkable spatial trend and specific congener distribution were observed in the sediment test results. The horizontal and vertical distributions of the sediments indicate that short-chain (C₁₀₋₁₁) and low-chlorinated (Cl₆₋₇) homologs are more likely to migrate deeper or farther away from the pollution source.
Показать больше [+] Меньше [-]Mitochondrial dynamics and mitophagy involved in MPA-capped CdTe quantum dots-induced toxicity in the human liver carcinoma (HepG2) cell line Полный текст
2021
Wu, Daming | Lu, Jie | Ma, Ying | Cao, Yuna | Zhang, Ting
Quantum dots (QDs) are nanoparticles of inorganic semiconductors and have great promise in various applications. Many studies have indicated that mitochondria are the main organelles for the distribution and toxic effects of QDs. However, the underlying mechanism of QDs interacting with mitochondria and affecting their function is unknown. Here, we report the mechanism of toxic effects of 3-mercaptopropionic acid (MPA)-capped CdTe QDs on mitochondria. Human liver carcinoma (HepG2) cells were exposed to 25, 50 and 100 μmol/L of MPA-capped CdTe QDs. The results indicated that MPA-capped CdTe QDs inhibited HepG2 cell proliferation and increased the extracellular release of LDH in a concentration-dependent manner. Furthermore, MPA-capped CdTe QDs caused reactive oxygen species (ROS) generation and cell damage through intrinsic apoptotic pathway. MPA-capped CdTe QDs can also lead to the destruction of mitochondrial cristae, elevation of intracellular Ca²⁺ levels, decreased mitochondrial transmembrane potential and ATP production. Finally, we showed that MPA-capped CdTe QDs inhibited mitochondrial fission, mitochondrial inner membrane fusion and mitophagy. Taken together, MPA-capped CdTe QDs induced significant mitochondrial dysfunction, which may be caused by imbalanced mitochondrial fission/fusion and mitophagy inhibition. These findings provide insights into the regulatory mechanisms involved in MPA-capped CdTe QDs-induced mitochondrial dysfunction.
Показать больше [+] Меньше [-]Effects of acute ambient pollution exposure on preterm prelabor rupture of membranes: A time-series analysis in Shanghai, China Полный текст
2021
Li, Cheng | Xu, Jing-Jing | He, Yi-Chen | Chen, Lei | Dennis, Cindy-Lee | Huang, He-Feng | Wu, Yan-Ting
While the effects of ambient pollutants on adverse perinatal outcomes have been studied, most studies have focused on preterm birth, stillbirth, and low birthweight. Few studies have examined the effects of ambient pollutants on prelabor rupture of membranes (PROM). This study was designed to explore the acute effects of ambient pollutants on both term PROM (TPROM) and preterm PROM (PPROM). We enrolled pregnant women receiving antenatal care between October 2013 and December 2019 at the International Peace Maternity and Child Health Hospital (IPMCHH). The effects of ambient pollutants (including PM₂.₅, PM₁₀, SO₂, CO, NO₂, and 8-h O₃) on TPROM and PPROM were estimated using generalized additive models (GAMs). Exposure-response relationship curves were also evaluated using GAMs after adjustment for confounding factors. Potential lagged effects were examined using various lag models. The data of 100,200 pregnant women who delivered at IPMCHH were analyzed. The fitted spline curves for PPROM were similar to the temporal trends of PM₂.₅, PM₁₀, SO₂, CO and NO₂ but not O₃, while those for TPROM were different from the temporal trends of all six air pollutants. An increased risk of PPROM was associated with increased concentrations of PM₂.₅, PM₁₀, SO₂ and CO on lag days 2 and 3, while no association was found between PPROM and daily concentration of O₃. After adjustment for confounding factors, there was a shift in the exposure-response curves, indicating associations between PPROM and PM₂.₅, PM₁₀, SO₂, and CO on lag days 2–3. Interaction effects of PM₂.₅, PM₁₀, SO₂, and CO were also found to increase the risk of PPROM. In conclusion, acute exposures to six critical air pollutants were not associated with an increased risk of TPROM; however, PM₂.₅, PM₁₀, SO₂, and CO were found to interact, increasing the risk for PPROM on lag days 2 and 3.
Показать больше [+] Меньше [-]Fish farm effluents as a source of antibiotic resistance gene dissemination on Jeju Island, South Korea Полный текст
2021
Jo, Hyejun | Raza, Shahbaz | Farooq, Adeel | Kim, Jungman | Unno, Tatsuya
The abuse or misuse of antibiotics is directly linked to the emergence of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs) in the environment. Most fish farms located on Jeju Island operate a flow-through system that pumps in seawater for fish farming and discharges it back to the ocean. To investigate the amount of ARGs that these fish farm effluents discharge into the marine environment, we conducted a metagenomic-based resistome analysis. We observed higher levels of ARGs in fish farm effluents than in seawater at beach and residential areas. A greater proportion of ARGs was found on plasmid rather than on chromosomal DNA, especially for sulfonamide and phenicol classes. The distribution of ARGs did not differ between summer and winter, but the microbial community did. In addition, fish farm samples contained significantly more opportunistic pathogens (i.e., Vibrio, Photobacterium, Aliivibrio, and Tenacibaculum) and virulence factors than non-fish farm samples. Vibrio was the most frequently identified host of ARGs and virulence factors. The presence of Vibrio in the coastal area has been increasing owing to the recent rise in the temperature of seawater. This study suggests the need for actions to treat or monitor ARGs in the coastal areas where fish farms operating a flow-through system are located.
Показать больше [+] Меньше [-]Temporal variations and spatial distributions of gaseous and particulate air pollutants and their health risks during 2015–2019 in China Полный текст
2021
Air quality has been significantly improved in China in recent years; however, our knowledge of the long-term changes in health risks from exposure to air pollutants remain less understood. Here we investigated the temporal variations and spatial distributions of six criteria pollutants (SO₂, NO₂, O₃, CO, PM₂.₅ and PM₁₀) in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) during 2015–2019. SO₂ showed 36−60% reductions in three regions, comparatively, NO₂ decreased by 3–17% in BTH and YRD and had a 5% increase in PRD. PM₂.₅ and PM₁₀ showed the largest reductions in BTH (30−33%) and the lowest in PRD (7−13%), while O₃ increased by 9% during 2015–2019 particularly in BTH and YRD. Assuming that only air pollutants above given thresholds exert excess risk (ERₜₒₜₐₗ) of mortality, we found that the different variations of pollutants have caused ERₜₒₜₐₗ in BTH decreasing significantly from 4.8% in 2015 to 2.0% in 2019, while from 1.9% to 1.0% in YRD, and a small change in PRD. These results indicate substantially decreased health risks of mortality from exposure to air pollutants as a response to improved air quality. Overall, PM₂.₅ dominated ERₜₒₜₐₗ accounting for 42−53% in BTH and 58−64% in YRD with steadily increased contributions, yet ERₜₒₜₐₗ presented strong seasonal dependence on air pollutants with largely increased contribution of O₃ in summer. The ERₜₒₜₐₗ caused by SO₂ was decreased substantially and became negligible except in winter in BTH, while NO₂ only played a role in winter. We also found that ERPM₂.₅ was compositional dependent with organics being the major contributor at low ERPM₂.₅ while nitrate was more important at high ERPM₂.₅. Our results highlight that evaluation of public health risks of air pollution needs to consider chemical differences of PM in different regions in addition to dominant air pollutants in different seasons.
Показать больше [+] Меньше [-]High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants Полный текст
2021
Ding, Jingli | Liu, Lu | Wang, Chuang | Shi, Lei | Xu, Fangsen | Cai, Hongmei
Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P–Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.
Показать больше [+] Меньше [-]Exposure of Chinese adult females to parabens from personal care products: Estimation of intake via dermal contact and health risks Полный текст
2021
Li, Chun | Zhao, Yang | Liu, Shan | Yang, Dongfeng | Ma, Huimin | Zhu, Zhou | Kang, Li | Lu, Shaoyou
Parabens are added into foodstuffs, pharmaceuticals and personal care products (PCPs) as additives extensively due to their excellent antiseptic and antibacterial effects. In the past decade, parabens have raised great concerns on their potential harm to humans. Existing studies have suggested positive correlations between PCP application and urinary paraben concentrations in females, but little is known about paraben exposure levels and health risks arising from PCP use. In this study, 150 PCP samples covering eleven categories were collected from South China and measured for the concentrations of five parabens, including methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP) and benzyl paraben (BeP). Parabens were widely detected in PCPs, with a detection frequency of 100%, 99.3%, 80.0%, 74.0% and 13.3%, for MeP, EtP, PrP, BuP and BeP, respectively. The median concentration of Σ₅parabens was 126 μg/g with a range of 6.38–424 μg/g across all PCP samples. The contents of MeP, EtP and PrP measured in leave-on PCPs were obviously higher than those in the rinse-off ones (p < 0.05). MeP and PrP were the main paraben analogues, together accounting for 93.6% of Σ₅parabens in all PCPs. The daily intakes of parabens through dermal absorption by Chinese adult females estimated by measurements obtained in the present study were 0.15 and 83.2 μg/kg-bw/day on basis of the application of rinse-off and leave-on PCPs, respectively. Among the eleven categories, sunscreen, body lotion and mask constituted the main exposure sources of parabens to females. The hazard quotients of parabens were far less than 1, indicating no considerable health risk for Chinese adult females.
Показать больше [+] Меньше [-]Coordination between root cell wall thickening and pectin modification is involved in cadmium accumulation in Sedum alfredii Полный текст
2021
Guo, Xinyu | Luo, Jipeng | Du, Yilin | Li, Jinxing | Liu, Yuankun | Liang, Yongchao | Li, Tingqiang
Root cell wall (RCW) modification is a widespread important defense strategy of plant to cope with trace metals. However, mechanisms underlying its remolding in cadmium (Cd) accumulation are still lacking in hyperaccumulators. In this study, changes of RCW structures and components between nonhyperaccumulating ecotype (NHE) and hyperaccumulating ecotype (HE) of Sedum alfredii were investigated simultaneously. Under 25 μM Cd treatment, RCW thickness of NHE is nearly 2 folds than that of HE and the thickened cell wall of NHE was enriched in low-methylated pectin, leading to more Cd trapped in roots tightly. In the opposite, large amounts of high-methylated pectin were assembled around RCW of HE with Cd supply, in this way, HE S. alfredii decreased its root fixation of Cd and enhanced Cd migration into xylem. TEM and AFM results further confirmed that thickened cell wall was caused by the increased amounts of cellulose and lignin while root tip lignification was resulted from variations of sinapyl (S) and guaiacyl (G) monomers. Overall, thickened cell wall and methylated pectin have synchronicity in spatial location of roots, and their coordination contributed to Cd accumulation in S. alfredii.
Показать больше [+] Меньше [-]Assessment of heavy metal contamination in the atmospheric deposition during 1950–2016 A.D. from a snow pit at Dome A, East Antarctica Полный текст
2021
Liu, Ke | Hou, Shugui | Wu, Shuangye | Zhang, Wangbin | Zou, Xiang | Yu, Jinhai | Song, Jing | Sun, Xuechun | Huang, Renhui | Pang, Hongxi | Wang, Jiajia
Antarctic trace element records could provide important insights into the impact of human activities on the environment over the past few centuries. In this study, we investigated the atmospheric concentrations of 14 representative heavy metals (Al, As, Cd, Co, Cu, Fe, K, Mg, Mn, Pb, Sb, Sr, Tl and V) from 174 samples collected in a 4-m snow pit at Dome Argus (Dome A) on the East Antarctic Plateau, covering the period from 1950 to 2016 A.D. We found great variability in the annual concentration of all metals. The crustal enrichment factors suggest that the concentrations of some heavy metals (Cd, Sb, Cu, As and Pb) were likely influenced by anthropogenic activities in recent decades. An analysis of source regions suggests that heavy metal pollution at Dome A was largely caused by human activities in Australia and South America (e.g. mining production, leaded gasoline). Based on the relationship between the trace elements fluxes and sea ice concentration (SIC), sea surface temperature (SST) and annual mean air temperature at 2 m above the ground (T₂ₘ), our analysis shows that deposition and transport of atmospheric aerosol at Dome A were influenced by circum-Antarctic atmospheric circulations.
Показать больше [+] Меньше [-]Java plum and amaltash seed biomass based bio-adsorbents for synthetic wastewater treatment Полный текст
2021
Giri, Deen Dayal | Jha, Jay Mant | Tiwari, Amit Kumar | Srivastava, Neha | Abd Elkhalek Mahmoud, Abeer Hashem | Alqarawi, Abdulaziz A. | Abd_Allah, Elsayed Fathi | Pal, Dan Bahadur
Biomass of Java plum (JP) and amaltash (AT) seeds were employed to remove arsenic from synthetic wastewater, cost effectively. The prepared biomasses were characterized by FE-SEM, EDX, FTIR, XRD, and ICP techniques. Experimentation the optimization study has been carried out by using Design-software 6.0.8. Response surface methodology has been applied to design the experiments where we have used three factors and three levels Box-Behnken design (BBD). Arsenic removal ability of bio-sorbents was evaluated and optimized by varying pH, adsorbent dose concentration of arsenic in synthetic wastewater. For 2.5 mg/L arsenic concentration and 80 mg adsorbent dose at pH 8.8 Java plum seeds (JP) based bio-adsorbent removed ∼93% and amaltash seeds (AT) based bio-adsorbent removed ∼91% arsenic from synthetic wastewater. The adsorption behaviour better explained following Freundlich model (R² = 0.99) compared to Temkin model (R² = 0.986) for As (III) ions. The adsorption capacity was 1.45 mg g⁻¹ and 1.42 mg g⁻¹ for JP and AT, respectively after 80 min under optimal set of condition. The adsorption kinetics was explained by either pseudo-first order model or Elovich model.
Показать больше [+] Меньше [-]