Уточнить поиск
Результаты 291-300 из 6,560
Mechanochemical degradation of perfluorohexane sulfonate: Synergistic effect of ferrate(VI) and zero-valent iron Полный текст
2020
Deng, Shanshan | Bao, Yixiang | Cagnetta, Giovanni | Huang, Jun | Yu, Gang
Perfluorohexane sulfonate (PFHxS) has been newly recommended to be added into the Stockholm Convention on persistent organic pollutants (POPs). As one of the major perfluoroalkyl pollutants, its long half-time in human serum and neurotoxicity are cause for significant concern. Although mechanochemical degradation has been evaluated as a promising ecofriendly technology to treat pollutants, the extraordinary stability of poly- and perfluoroalkyl substances (PFASs) raises harsh requirements for co-milling reagents. In the present study, zero-valent iron (ZVI) and ferrate(VI) were for the first time used as the co-milling reagents to degrade PFHxS. When ZVI and ferrate(VI) were used alone, both the degradation and defluorination efficiencies were low. However, after milling at the optimum ratio (ferrate(VI):ZVI = 1:2) for 4 h, the synergistic effect of ZVI and ferrate(VI) resulted in almost complete degradation (100%) and defluorination (95%). Two points can account for this excellent performance: (1) the mechanochemical energy input in the system initiates and prominently promotes related reactions; and (2) the active species generated from the reactions among ZVI, ferrate(VI) and other high-valent iron species will accelerate the process of electron transfer. The sulfonate group comprises the favorable attack sites, as corroborated by both the identified intermediates and quantum chemical calculations. The homolysis of the C–S bond is not only the triggering step, but also the rate-limiting step. In summary, the present work confirms the feasibility and underlying mechanism of the ZVI–ferrate(VI) co-milling system to defluorinate PFHxS, which might be a promising technology to treat PFASs in solid wastes.
Показать больше [+] Меньше [-]F–53B and PFOS treatments skew human embryonic stem cell in vitro cardiac differentiation towards epicardial cells by partly disrupting the WNT signaling pathway Полный текст
2020
Yang, Renjun | Liu, Shuyu | Liang, Xiaoxing | Yin, Nuoya | Ruan, Ting | Jiang, Linshu | Faiola, Francesco
F–53B and PFOS are two per- and polyfluoroalkyl substances (PFASs) widely utilized in the metal plating industry as mist suppressants. Recent epidemiological studies have linked PFASs to cardiovascular diseases and alterations in heart geometry. However, we still have limited understanding of the effects of F–53B and PFOS on the developing heart. In this study, we employed a human embryonic stem cell (hESC)-based cardiac differentiation system and whole transcriptomics analyses to evaluate the potential developmental cardiac toxicity of F–53B and PFOS. We utilized F–53B and PFOS concentrations of 0.1–60 μM, covering the levels detected in human blood samples. We demonstrated that both F–53B and PFOS inhibited cardiac differentiation and promoted epicardial specification via upregulation of the WNT signaling pathway. Most importantly, the effects of F–53B were more robust than those of PFOS. This was because F–53B treatment disrupted the expression of more genes and led to lower cardiac differentiation efficiency. These findings imply that F–53B may not be a safe replacement for PFOS.
Показать больше [+] Меньше [-]Effect of substitution reaction with tin chloride in thermal treatment of mercury contaminated tailings Полный текст
2020
Lee, Eun-Song | Cho, Soo-Jin | Back, Seung-Ki | Seo, Yong-Chil | Kim, Seong-Heon | Ko, Ju-In
Sites contaminated by mercury (Hg) from artisanal small-scale gold mine tailings have been found near agricultural land. For the active implementation of the Minamata Convention on Mercury, development of technology for the remediation of Hg contaminated sites is required. This study examined the conditions for the thermal treatment of Hg contaminated tailings at reduced temperature by introducing SnCl₂ as an additive. Thermogravimetric analysis (TGA) was used to identify the possibility of converting typical Hg compounds (HgO, HgS) in the environment to HgCl₂. The operation conditions for thermal treatment such as temperature, retention time, and ratio of [Cl₂]/[Hg] were derived from lab scale experiments using commercial Hg compounds (HgO, HgS), additive (SnCl₂), and tailings. The tailings with Hg content of 26.39 mg-Hg/kg were reduced to 3.87 mg-Hg/kg and 4.57 μg-g/L of leaching concentration through the application of the Korea standard leaching test. Both concentrations were below the standard limit of soil pollution and hazardous waste classification criteria. The sequential extraction procedure was applied to evaluate the Hg stability of residual tailings. The results show that this method will be effective for remediation of small scale Hg contaminated areas.
Показать больше [+] Меньше [-]Improved PM2.5 predictions of WRF-Chem via the integration of Himawari-8 satellite data and ground observations Полный текст
2020
Hong, Jia | Mao, Feiyue | Min, Qilong | Pan, Zengxin | Wang, Wei | Zhang, Tianhao | Gong, Wei
The new-generation geostationary satellites feature higher radiometric, spectral, and spatial resolutions, thereby making richer data available for the improvement of PM₂.₅ predictions. Various aerosol optical depth (AOD) data assimilation methods have been developed, but the accurate representation of the AOD-PM₂.₅ relationship remains challenging. Empirical statistical methods are effective in retrieving ground-level PM₂.₅, but few have been evaluated in terms of whether and to what extent they can help improve PM₂.₅ predictions. Therefore, an empirical and statistics-based scheme was developed for optimizing the estimation of the initial conditions (ICs) of aerosol in WRF-Chem (Weather Research and Forecasting/Chemistry) and for improving the PM₂.₅ predictions by integrating Himawari-8 data and ground observations. The proposed method was evaluated via two one-year experiments that were conducted in parallel over eastern China. The contribution of the satellite data to the model performance was evaluated via a 2-week control experiment. The results demonstrate that the proposed method improved the PM₂.₅ predictions throughout the year and mitigated the underestimation during pollution episodes. Spatially, the performance was highly correlated with the amount of valid data.
Показать больше [+] Меньше [-]Interaction and coexistence characteristics of dissolved organic matter with toxic metals and pesticides in shallow groundwater Полный текст
2020
He, Xiao-Song | Zhang, Ya-Li | Liu, Zhen-Hai | Wei, Dan | Liang, Gang | Liu, Hong-Tao | Xi, Bei-Dou | Huang, Zhan-Bin | Ma, Yan | Xing, Bao-Shan
The long-term and large-scale utilization of fertilizers and pesticides in facility agriculture leads to groundwater pollution. However, the coexistence and interactions between organic fertilizers (i.e., organic matter), toxic metals, and pesticides in shallow groundwater have seldom been studied. Thus, the study sought to characterize said interactions via fluorescence, ultraviolet–visible spectroscopy (UV–Vis), and Fourier-transform infrared spectroscopy coupled with two-dimensional correlation spectroscopy and chemometric techniques. The results indicated that groundwater DOM was comprised of protein-, polysaccharide-, and lignin-like substances derived from organic fertilizers. Protein-like substances accounted for the binding of Co, Ni, and Fe, while polysaccharide- and lignin-like substances were mainly responsible for Cr and Mo complexation. Moreover, lignin- and polysaccharide-like substances played a key role in the binding of pesticides (i.e., dichlorodiphenyltrichloroethane [DDT], endosulfan, γ-hexachlorocyclohexane [γ-HCH], monocrotophos, chlorpyrifos, and chlorfenvinphos), rendering the conversion of γ-HCH to β-hexachlorocyclohexane (β-HCH) and the degradation of DDT to dichlorobenzene dichloroethylene (DDE) ineffective. However, the presence of protein-like substances in groundwater benefited the degradation and conversion of γ-HCH and α-endosulfan. Redundancy analyses showed that lignin- and polysaccharide-like matter had the most impacts on the coexistence of DOM with toxic metals and pesticides.
Показать больше [+] Меньше [-]Triazole resistance in Aspergillus fumigatus in crop plant soil after tebuconazole applications Полный текст
2020
Cao, Duantao | Wu, Ruilin | Dong, Suxia | Wang, Feiyan | Ju, Chao | Yu, Sumei | Xu, Shiji | Fang, Hua | Yu, Yunlong
Aspergillus fumigatus is the primary agent of invasive aspergillosis (IA) causing high morbidity and mortality in immunocompromised patients. Triazole resistance in A. fumigatus and its sources have gained wide attention. For several years, environmental fungicides use has been proposed as the major cause for triazole resistance in A. fumigatus. However, there are few studies on azole-resistant A. fumigatus (ARAF) selected by triazole fungicides in agricultural systems. We studied the possible emergence of ARAF in the field after exposure to triazole fungicide tebuconazole. Our results showed that exposure to tebuconazole in soil selects for resistance to triazoles in A. fumigatus. The probability of ARAF developing in soils depends upon the concentrations of tebuconazole after application. We suggest that tebuconazole applications should be minimized to reduce selective pressure for the generation of ARAFs.
Показать больше [+] Меньше [-]An untargeted metabolomic approach for the putative characterization of metabolites from Scenedesmus obliquus in response to cadmium stress Полный текст
2020
Mangal, V. | Nguyen, T.Q. | Fiering, Q. | Guéguen, C.
Cadmium (Cd) is a widespread contaminant in aquatic systems and has a variety of toxicological implications on freshwater microorganisms. In this study, the green algae Scenedesmus obliquus was exposed to increasing Cd concentrations that inhibited growth by 20% (12.6 μmol L⁻¹), 30% (39.8 μmol L⁻¹) and 40% (83.2 μmol L⁻¹) and the metabolite profiles of released and cellular biomolecules were explored using an untargeted direct infusion high resolution Fourier transform ion cyclotron resonance mass spectrometry approach. In Cd untreated cultures, intrinsic differences in composition existed between released biomolecules and freeze-dried cells. Based on putatively characterized compound groups, a greater proportion of Cys-GSH isomers and carboxyamides were present in exudates whereas sugar isomers and phosphonic acids comprised most cellular metabolites. In cultures exposed to 83.2 μmol L⁻¹ Cd, an overall shift in metabolomic response across both released biomolecules and cellular components resulted in an increase of lipid-based esters, and Cys-GSH isomers. These two important metabolites are used in antioxidant defense mechanisms and reactive oxygen species prevention during cellular stress. The diversity of metabolites also decreased as Cd concentrations increased when compared to untreated cultures, suggesting that overall metabolites specialize upon metal stress. We show systemic shifts from sugar and carboxylic isomers to specialized proteins and lipid isomers to help S. obliquus cope with stress. These findings highlight the potential use of this green algae as a potential biosorbent and sheds light into the metabolomics of Cd toxicology and insights into microbial metal adaptation.
Показать больше [+] Меньше [-]Sertraline inhibits top-down forces (predation) in microbial food web and promotes nitrification in sediment Полный текст
2020
Li, Yi | Miao, Yuanyuan | Zhang, Wenlong | Yang, Nan | Niu, Lihua | Zhang, Huanjun | Wang, Longfei
Sertraline is a widely used antidepressant that becomes an aquatic pollutant through metabolic excretion and improper disposal. Determining the impact of sertraline on benthic microbial ecosystems is important for the transformation of river biogenic elements. However, the molecular initiating event induced by sertraline is more readily observed at higher levels, such as the individual or population level of larger organisms, and the effect is not pronounced in benthic organisms, which are directly involved in nitrogen transformation. Therefore, this study used DNA metabarcoding to analyze the effect of sertraline on the microbial ecosystem and material cycles in river sediment through the lens of a microbial food web. The presence of sertraline in the river sediment enhanced the mineralization capacity of nitrogen and increased the accumulation of nitrate in the sediment. Sertraline affected the structure of the microbial food web by stimulating different successions of bacteria and eukaryotes. A structural equation model revealed that sertraline affected the microbial food web model through top-down forces (predation) by reducing the trophic transfer efficiency from metazoans to protozoans. This effect resulted in decreases in the trophic transfer efficiency from protozoans to bacteria and increases in nitrogen mineralization capacity. This was followed by a gradual increase in the nitrification reaction under the action of nitrifying bacteria, increasing the threat to the ecological health of rivers. The results show that sertraline affects the material cycle of river ecosystems and emphasizes that the assessment of the ecological risks of sertraline needs to be considered from the perspective of the material cycle of ecosystems.
Показать больше [+] Меньше [-]Maternal preconception phthalate metabolite concentrations in follicular fluid and neonatal birth weight conceived by women undergoing in vitro fertilization Полный текст
2020
Wu, Lin-Jing | Teng, Xue-Mei | Yao, Yang-Cheng | Liu, Chong | Du, Yao-Yao | Deng, Tao-Ran | Yuan, Xiao-Qiong | Zeng, Qiang | Li, Yu-Feng | Guo, Na
Exposure to phthalates during gestation has been associated with decreased birth weight among offspring. However, the associations between preconception phthalate metabolites in follicular fluid (FF) and offspring birth weight among women undergoing in vitro fertilization (IVF) remain largely unknown. Here, we explored the associations between preconception phthalate metabolite concentrations in FF and the birth weights of singletons and twins among women undergoing IVF. We recruited 147 female participants who gave birth to 90 singletons and 57 twin infants at the Reproductive Medicine Center, Tongji Hospital, Wuhan, between November and December 2016. Each participant was asked to complete a questionnaire at the time of recruitment and provide a FF sample on the day of oocyte retrieval. The FF concentrations of eight phthalate metabolites were determined using high-performance liquid chromatography and tandem mass spectrometry. Birth outcomes were abstracted from medical records. The associations between phthalate metabolites in FF and birth weights of the singleton and twin groups were evaluated using generalized linear models (GLMs). We found that birth weight in the twin group had negative dose-response associations with maternal preconception monobenzyl phthalate (MBzP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) in FF (both P for trends < 0.05) and that birth weight in the singleton group had positive dose-response associations with monoethyl phthalate (MEP) and mono(2-ethyl-5 hydroxyhexyl) phthalate (MEHHP) in FF (both P for trends < 0.05). These associations persisted when we modeled as continuous variables. In addition, we observed male-specific association between decreased twin birth weight and MEOHP and MBzP and a female-specific associations between increased singleton birth weight and MEP, MEHHP and the sum of di(2-ethylhexyl) phthalate (∑DEHP) (all P for interactions < 0.05). Preconception phthalate metabolites in maternal FF may affect the birth weights of both singleton and twin newborns.
Показать больше [+] Меньше [-]Meteorological variations impeded the benefits of recent NOx mitigation in reducing atmospheric nitrate deposition in the Pearl River Delta region, Southeast China Полный текст
2020
Zhong, Buqing | Wang, Xuemei | Ye, Lyumeng | Ma, Mingrui | Jia, Shiguo | Chen, Weihua | Yan, Fenghua | Wen, Zhang | Padmaja, Krishnan
The trends and variability of atmospheric nitrogen deposition in the Pearl River Delta (PRD) region for the period 2008–2017 were investigated by integrating ground- and satellite-based observations and a chemical transport model, in order to gauge the effects of emission reductions and meteorological variability. We show that dry deposition observation of oxidized nitrogen decreased at the rate of 2.4% yr⁻¹ for a moderate reduction in NOₓ emissions by 27% in the past decade, while reduced nitrogen presented an increase at the rate of 2.3% yr⁻¹ despite no regulated interventions for NH₃ emissions, which is likely related to changes in atmospheric gas-particle partitioning of NH₃ as reductions in SO₂ and NOₓ emissions. These results coincide with the trends in ground-level concentrations of oxidized and reduced nitrogen compounds in the atmosphere during 2008–2017. The changes in annual deposition fluxes of total oxidized and reduced nitrogen are not statistically significant trends and largely related with the inter-annual variability in their corresponding wet depositions, which reflects combined effects of variability in precipitation amount, and changes in atmospheric nitrogen compounds which dominates wet deposition of the oxidized and reduced forms. The meteorological conditions can mask 34% and 25% decrease in total oxidized and reduced nitrogen deposition on the decadal timescale, respectively. We conclude that meteorology-driven variability probably have masked the full response of oxidized nitrogen deposition to NOₓ emissions reduction. Our results also imply that persistent and integrated emission control strategies on NOₓ and NH₃ are needed to effectively reduce total nitrogen deposition fluxes towards the critical limit in the PRD region.
Показать больше [+] Меньше [-]