Уточнить поиск
Результаты 3031-3040 из 4,938
Aerosol and pollutant characteristics in Delhi during a winter research campaign Полный текст
2019
Dumka, Umesh C. | Tiwari, Suresh | Kaskaoutis, Dimitris G. | Soni, Vijay K. | Safai, Promod D. | Attri, Shiv D.
Urban areas in developing countries are major sources of carbonaceous aerosols and air pollutants, pointing out the need for a detailed assessment of their levels and origin close to the source. A multi-instrument research campaign was performed in Delhi during December 2015–February 2016 aimed at exploring the pollution levels and the contribution of various sources to particulate matter (PM) concentrations, black carbon (BC) aerosols, and trace gases. The weak winds (< 5–6 m s⁻¹) along with the shallow boundary layer favoured the formation of thick and persistent fog conditions, which along with the high BC (24.4 ± 12.2 μg m⁻³) concentrations lead to the formation of smog. Very high pollution levels were recorded during the campaign, with mean PM₁₀, PM₂.₅, CO, NO, and O₃ concentrations of 245.5 ± 109.8 μg m⁻³, 145.5 ± 69.5 μg m⁻³, 1.7 ± 0.5 ppm, 7.9 ± 2.3 ppb, and 31.3 ± 18.4 ppb, respectively. This study focuses on examining the daily/diurnal cycles of the aerosol optical properties (extinction, scattering, absorption coefficients, single scattering albedo), as well as of PM and other pollutant concentrations, along with changes in meteorology (mixing-layer height and wind speed). In addition, the hot-spot pollution sources in the greater Delhi area were determined via bivariate plots and conditional bivariate probability function (CBPF), while the distant sources were examined via the concentration weighted trajectory (CWT) analysis. The results show that the highest aerosol absorption and scattering coefficients, PM, and trace gas concentrations are detected for weak winds (< 2 m s⁻¹) with a preference for eastern directions, revealing high contribution from local sources and accumulation of pollutants within urban Delhi.
Показать больше [+] Меньше [-]The application of forward osmosis for simulated surface water treatment by using trisodium citrate as draw solute Полный текст
2019
Yang, Shihui | Gao, Baoyu | Zhao, Pin | Wang, Chen | Shen, Xue | Yue, Qinyan | Shon, Ho Kyong
In this study, trisodium citrate was used as draw solute in forward osmosis (FO) due to its biodegradability and easy reuse after FO dilution. The effect of operating conditions on FO performance was investigated. The study focused on the long-term flux performance and membrane fouling when surface water was used as feed solution. A water flux of 9.8 LMH was observed using 0.5 M trisodium citrate as draw solution in PRO mode. In the long-term FO process, trisodium citrate showed a slight decrease in total flux loss (13.06%) after 20 h of operation. The membrane fouling was significantly reduced after a two-step physical cleaning. A considerable flux recovery (> 95%) of the fouled membrane was finally obtained. Therefore, this study proves the superiority of trisodium citrate as draw solution and paves a new way in applying FO directly for surface water reclamation.
Показать больше [+] Меньше [-]Synergistic effect and degradation mechanism on Fe-Ni/CNTs for removal of 2,4-dichlorophenol in aqueous solution Полный текст
2019
Sun, Yufeng | Liu, Zongtang | Fei, Zhenghao | Li, Changshun | Chun, Yuan | Zhang, Aimin
Fe-Ni bimetallic nanoparticles supported on CNTs (Fe-Ni/CNTs) were synthesized, characterized, and applied for removal of 2,4-dichlorophenol (2,4-DCP) in aqueous solution. The removal performance was enhanced drastically on Fe-Ni/CNTs with respect to monometallic Fe/CNTs. The synergistic effect between Fe-Ni nanoparticles and CNTs has been studied in detail. The research results indicated that the doping of Ni played an important role in promoting the catalytic degradation of 2,4-DCP. And the presence of CNTs not only could effectively reduce the aggregation of nanoparticles but also facilitate the mass transfer of 2,4-DCP and the formation of active atomic hydrogen during the catalytic process. In addition, the removal kinetics of 2,4-DCP by Fe-Ni/CNTs were in agreement with a pseudo-first-order model, and the rate constants were dependent on a number of factors including the initial concentration of 2,4-DCP, the dosage of Fe-Ni/CNTs, pH value of the solution, and doping amount of Ni. The degradation mechanism involved the adsorption by CNTs and catalytic reduction by Fe under the stimulating of Ni, and the preferred dechlorination followed the order of para-Cl > ortho-Cl. The study confirmed that Fe-Ni/CNTs had a potential to be a promising catalytic material for removal of chlorophenol and had a great prospect for practical application.
Показать больше [+] Меньше [-]Organotin compounds in touristic marinas of the northern Adriatic Sea: occurrence, speciation and potential recycling at the sediment-water interface Полный текст
2019
Formalewicz, Malgorzata M. | Rampazzo, Federico | Noventa, Seta | Gion, Claudia | Petranich, Elisa | Crosera, Matteo | Covelli, Stefano | Faganeli, Jadran | Berto, Daniela
Butyltin compound (BTC) contamination was evaluated in two north Adriatic marinas, San Rocco (Italy) and Lucija (Slovenia). BTC sedimentary concentrations (121 ± 46 and 352 ± 30 ng Sn g⁻¹ in San Rocco and Lucija, respectively) evidenced the past use of antifouling paints, confirmed by the reduced tributyltin content (~ 46%) with respect to the sum of BTC. Elemental and organic carbon isotopic (δ¹³C) analyses of bulk sediments and its lipid and humic substances were performed in order to evaluate their role in BTC partitioning and preservation. The δ¹³C of sedimentary bulk and refractory organic matter suggested that diagenetic processes could play a role in the preservation or release of pollutants. No contamination was found in water collected from the benthic chamber and thus, fluxes at the sediment-water interface were not assessed, except for MBT efflux at Lucija (28.9 ng Sn m⁻² day⁻¹). Nevertheless, BTC concentrations in porewaters (up to 75 ng Sn l⁻¹) and rather low sediment-porewater partitioning coefficients (Kd) with respect to the data reported in the literature would suggest a potential risk of the reintroduction of BTC into the water column at both sites: at Lucija, sedimentary contamination is high despite the greater Log Kd, whilst at San Rocco, the low BTC concentration is associated with a reduced sediment affinity.
Показать больше [+] Меньше [-]Photocatalytic treatment of petroleum industry wastewater using recirculating annular reactor: comparison of experimental and modeling Полный текст
2019
Rabahi, Amina | Assadi, Aymen Amine | Nasrallah, Noureddine | Bouzaza, Abdelkrim | Maachi, Rachida | Wolbert, Dominique
In this study, the treatment of petroleum wastewater has been investigated by applying heterogeneous photocatalytic process using a recirculating annual reactor. An attempt has been made to study the effect of operating parameters such as TiO₂ load, initial concentration of the pollutant, emitted photonic flux, and pH of the solution. The degradation efficiency of toluene and benzene, as target molecules, was studied. In fact, result showed that the toluene is better degraded alone than when it is in a mixture. The rate of elimination of toluene separately was 89.5%, while it was 76.19 and 79.55% in the binary (toluene/benzene) and the ternary mixtures (toluene/benzene/xylene), respectively. Moreover, the mineralization of the solution decreased more rapidly when toluene was pure with a rate of 83.13% compared to binary and ternary mixtures. A mathematical model is proposed taking into account the parameters influencing the process performances. The mass transfer step, the degradation, and the mineralization kinetics of the pollutants were defined as model parameters. To build the model, mass balances are written in bulk region and catalyst phase (solid phase). The degradation mechanism on solid phase is divided in two stages. Firstly, the removal of toluene gives an equivalent intermediate (EI). Secondly, EI is oxidized into carbon dioxide (CO₂). This approach gives a good agreement between modeling and empirical data in terms of degradation and mineralization. It also allows for the simulation of toluene kinetics without knowing the plausible chemical pathway. A satisfactory fit with experimental data was obtained for the degradation and mineralization of toluene.
Показать больше [+] Меньше [-]Study on performance of electrostatic precipitator under multi-physics coupling Полный текст
2019
Chen, Bing | Li, Hongjiao | He, Yuzhong | Liu, Baiqian | Zhang, Lijie
A wire-plate electrostatic precipitator (ESP) is developed to analyze the particle transport characteristics and the influence of various factors on the performance of ESP. Above all, an experimental device is built to measure the current density distribution of the plates and obtain good consistency with the numerical simulation results, taking the ESP model established by COMSOL/Multiphysics as the numerical simulating object. Firstly, the electric field is solved by finite element method(FEM) to obtain the potential and charge density distribution. Then, the influence of secondary flow on the main flow at different flow velocities is explored. Finally, multi-physics coupling calculations show the influence of dust particle properties, electrode configuration, and operating conditions on ESP performance. The study found that the particle diameter is positively correlated with its charge, force, and motion, and the relative permittivity of the particles affects the collecting efficiency by affecting its charge difficulty. The wire-to-wire spacing is not proportional to collecting efficiency, when the spacing is 80 mm, the efficiency and the corona current can be maximized. Average electric field strength, corona current density, and current density distribution standard deviation satisfy the cubic function relationship. In addition, the effect of airflow velocity on collecting efficiency and particle precipitation is revealed. It provides a valuable basis for design and performance optimization of ESP.
Показать больше [+] Меньше [-]Constituent transformation mechanism of concentrated leachate after incineration at different temperatures Полный текст
2019
Ren, Xu | Song, Kai | Xiao, Yu | Chen, Weiming | Liu, Dan
Spraying concentrated leachate into an incineration furnace and burning is encouraged by the Chinese government as a harmless method for leachate treatment. In this research, the constituent transformation mechanism was studied, by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS), of residues after burning the concentrated leachate in a muffle furnace at different temperatures (750 °C, 850 °C, 900 °C, 1000 °C, and 1100 °C). XRD results showed that the main components of the residues were metal chlorides and calcium salt crystals and that the peak position of most of these crystals changed little because their crystal structure was stable at high temperatures. SEM results illustrated that the higher the burning temperature, the smaller the solid particles, and the looser the structures of the residues. EDS analysis showed that S atoms in the concentrated leachate were usually transformed into gaseous compounds during incineration, whereas most of the Cl atoms could be fastened onto solid residues if an appropriate temperature was maintained. This study concluded that 900 °C was the best burning temperature for spraying concentrated leachate into the furnace. In addition, this study suggested that material selection for the nozzle and flue gas pipelines must pay more attention to corrosion caused by gaseous sulfur compounds. Similarly, material selection for the inner wall of the incinerator furnace should pay more attention to corrosion caused by Cl atoms. This means that the municipal solid waste (MSW) incineration power plants should incorporate various and appropriate corrosion-resistant materials according to the different regions of the incinerator.
Показать больше [+] Меньше [-]Steam explosion pretreatment of rice straw to improve structural carbohydrates anaerobic digestibility for biomethanation Полный текст
2019
Siddhu, Muhammad Abdul Hanan | Li, Wanwu | He, Yanfeng | Liu, Guangqing | Chen, Chang
Effectiveness of steam explosion (SE) pretreatment for deconstructing the complex structural carbohydrates (SC) and lignin recalcitrance properties of rice straw (RS) for conjunctive improvement of biofuel yield and waste valorization was evaluated. This work exhibited successful pretreatment of RS at a different pressure (1.2, 1.5, and 1.8 MPa) and retention (3, 6, 9, and 12 min) for enhancement of SC contribution to biomethane production. Regression analysis demonstrated that SE pretreatment efficiency improved at high-temperature and short-retention time for biodegradation of RS. Maximum cumulative methane yield (EMY) achieved 254.8 mL/gvs at 1.2 MPa (3 min) of SE-treated RS with 62.7% of very significant improvement compared with untreated RS (156.6 mL/gvs). Furthermore, solid fraction of xylose, arabinose, cellobiose, glucose, and acid-soluble lignin in SE-treated RS of 1.2 MPa (3 min) were biodegraded by 27.4%, 46.4%, 100%, 48.8%, and 14.1%, respectively, after anaerobic digestion. Therefore, SE pretreatment was an encouraging approach for enhancing SC conversion to biomethane and waste resource to circular economy.
Показать больше [+] Меньше [-]TiO2 nanoparticles may alleviate cadmium toxicity in co-treatment experiments on the model hydrophyte Azolla filiculoides Полный текст
2019
Spanò, Carmelina | Bottega, Stefania | Sorce, Carlo | Bartoli, Giacomo | Ruffini Castiglione, Monica
The hydrophyte Azolla filiculoides can be a useful model to assess if TiO₂ NPs may in some way alleviate the Cd injuries and improve the ability of the plant to cope with this metal. With this mechanistic hypothesis, after a pre-treatment with TiO₂ NPs, A. filiculoides plants were transferred to cadmium-contaminated water with or without TiO₂ nanoparticles. After 5 days of treatment, cadmium uptake, morpho-anatomical, and physiological aspects were studied in plants. The continuous presence of TiO₂ nanoparticles, though not increasing the uptake of cadmium in comparison with a priming treatment, induced a higher translocation of this heavy metal to the aerial portion. Despite the translocation factor was always well below 1, cadmium contents in the fronds, generally greater than 100 ppm, ranked A. filiculoides as a good cadmium accumulator. Higher cadmium contents in leaves did not induce damages to the photosynthetic machinery, probably thanks to a compartmentalization strategy aimed at confining most of this pollutant to less metabolically active peripheral cells. The permanence of NPs in growth medium ensured a better efficiency of the antioxidant apparatus (proline and glutathione peroxidase and catalase activities) and induced a decrease in H₂O₂ content, but did not suppress TBARS level.
Показать больше [+] Меньше [-]Residues of endosulfan in cotton growing area of Vehari, Pakistan: an assessment of knowledge and awareness of pesticide use and health risks Полный текст
2019
Ashfaq, Ahmad | Shāhid, Muḥammad | Khalid, Sana | Zaffar, Habiba | Naqvi, Tatheer | Pervez, Arshid | Vēlāyutan̲, T. A. | Ali, Muhammad Arif | Abbas, Ghulam | Nasim, Wajid
This study is based on self-reported information collected from selected farmers of Vehari District, Punjab, Pakistan, to determine their technical knowledge and awareness about pesticide use and associated environmental and health risks. Moreover, soil contamination by routinely used persistent organochlorine pesticide, endosulfan, was also evaluated. Survey data revealed very low literacy rate (on an average 9th grade education) and technical knowledge (almost missing) of the farmers in Vehari District. The farmers are unable to fully read and understand the instructions about the use of pesticide marked on the containers. They are not fully aware of pesticide persistence and toxicity (73%), unable to identify cotton pests and diseases (86%), and do not know which crop to grow in cotton adjacent fields (100%). Data also revealed that the farmers (100%) do not follow safety measure during pesticide application and are unaware of pesticide toxicity symptoms in human as well as the basic first-aid practices (89%).Poor literacy rate and lack of technical knowledge of farmers in Vehari regarding pesticide use and handling are posing serious environmental and health risks among the local inhabitants, particularly among farmers. Soil analysis results showed that concentration of α- and β-endosulfan ranged from 0–14 to 0–14.64 μg/mg, respectively. Principal component analysis showed that soil organic matter is the key soil parameter controlling the occurrence and fate of endosulfan under sandy loam soil conditions of Vehari District. There is a serious need of improving technical and environmental knowledge of farmer about pesticide risks on human health in the studied area, in particular, and the entire country in general. Findings are of great use for policymaking in Pakistan to minimize pesticide risks in Pakistan.
Показать больше [+] Меньше [-]