Уточнить поиск
Результаты 3031-3040 из 6,535
The use of response surface methodology for improving fatty acid methyl ester profile of Scenedesmus vacuolatus
2020
Ghosh, Atreyee | Samadhiya, Kanchan | Kashyap, Mrinal | Anand, Vishal | Sangwan, Pritam | Bala, Kiran
The present study has been designed to optimise certain important process parameters for Scenedesmus vacuolatus to achieve efficient carbon dioxide extenuation as well as suitable fatty acid profile in context to improve biodiesel properties. The effect of varying sodium bicarbonate concentration was evaluated in single and multicomponent system such as nitrate, phosphate, inoculum size to observe interactive effects on algae biomass production, carbon dioxide (CO₂) removal efficiency and fatty acid methyl ester (FAME) profile. Maximum biomass productivity of 117.0 ± 7.7 mg/L/day with 3 g/L of sodium bicarbonate was obtained i.e. approximately 2 folds higher than the control. Under multicomponent exposure, maximum biomass of 1701.5 ± 88.8 mg/L and maximum chlorophyll concentration of 15.3 ± 6.4 mg/L were achieved on 14th day at 3 g/L sodium nitrate, 0.1 g/L dipotassium hydrogen phosphate, 2 g/L of sodium bicarbonate and initial cell density of 0.3 (N₃P₀.₁B₂OD₀.₃). FAME content of 46.1 mg/g of biomass was obtained at this combination which is approximately 3 folds higher than the FAME content obtained under nitrogen and phosphate deprivation (16.6 mg/g at N₀P₀B₂OD₀.₃). Confocal microscopy images confirmed the results with enhanced lipid droplet accumulation at high bicarbonate concentration as compared with the control. This interactive study concluded the variability in FAME profile along with the exposure to varying nutrient concentrations.
Показать больше [+] Меньше [-]The Interactive Impact of Land Cover and DEM Resolution on the Accuracy of Computed Streamflow Using the SWAT Model
2020
Al-Khafaji, Mahmoud | Saeed, Fouad H. | Anṣārī, Naẓīr
Twenty daily time step–based SWAT simulation models for the Duhok, Adhaim and Dokan dam watersheds, in Iraq, were implemented using five land cover (LC) and digital elevation model (DEM) of different resolutions. The optimal LC and DEM for computing the most accurate streamflow for each watershed were specified. Results indicated that delineation of the flat watersheds is significantly affected by the DEM resolution and there was no evident trend on the computation of watersheds’ total areas, boundaries, number of subbasins and stream networks. Moreover, there is no significant trend between the increase in LC and DEM resolutions and accuracy of the computed streamflow. The most accurate streamflows for the Duhok, Adhaim and Dokan watersheds were computed using LC (DEM) of 30 m, 1000 m and 1000 m.
Показать больше [+] Меньше [-]Mineral Nutrients, Organic Amendment, and Water Impact Decomposition of Biodegradable Containers Under Controlled Conditions
2020
Harris, Bethany A. | Habteselassie, Mussie Y. | Pennisi, Svoboda V.
Laboratory studies were conducted to evaluate effect of soil water content, organic soil amendment, and mineral nutrient application on decomposition of three types of biodegradable containers: recycled paper, wood pulp fiber, and coconut coir over 182 days. Soil respiration was assessed through alkaline trap and titration method to determine decomposition of biodegradable containers. Percentage of carbon content remaining in the container material after 182 days was also quantified. Relative to soil water content, recycled paper containers under 40% water holding capacity (WHC) had higher carbon dioxide released than 60%WHC. Carbon analysis indicated that less carbon remained for all container types under 60% than 40%WHC. For recycled paper and coconut coir pots, treatments receiving container and soil amendment had significantly increased soil respiration. Post-experiment carbon analysis revealed less carbon remained in the recycled paper, wood pulp fiber, and coconut coir containers in the absence of organic soil amendment. For coconut coir, the interaction of container × mineral nutrients appeared to increase soil respiration with higher carbon dioxide released under biodegradable container × low mineral nutrient. This study suggests that cultural practices (i.e., irrigation and organic matter amendment) could facilitate degradation for certain biodegradable container types; however, to provide extensive cultural practice recommendations regarding biodegradable containers, more research is needed.
Показать больше [+] Меньше [-]Levels of biogenic amines in cheese: correlation to microbial status, dietary intakes, and their health risk assessment
2020
Ma, Jin-Kui | Raslan, Amal A. | Elbadry, Seham | El-Ghareeb, Waleed Rizk | Mulla, Zohair S. | Bin-Jumah, May | Abdel-Daim, Mohamed M. | Darwish, Wageh Sobhy
Biogenic amines (BAs) are natural toxicants produced during the metabolism of their precursor amino acids or due to the proteolytic activities of some microorganisms. The objective of this study was to estimate the formed BAs in five types of the most commonly consumed and retailed cheese in Egypt. The examined cheese types included Feta, Karish, Mozzarella, Rumy, and Mish. Besides, the total mesophilic (TMC) and total psychrophilic (TPsC) bacterial counts were investigated. Furthermore, the estimated daily intakes (EDI) of BAs via the ingestion of various types of cheese were calculated, and their potential health risks were discussed. The achieved results indicated the formation of histamine (HIS), tyramine (TYR), cadaverine (CAD), putrescine, spermine, and spermidine at different concentrations. Except for Feta cheese, all samples (100%) of other cheese types had HIS concentrations higher than the established maximum permissible limits. Mish cheese contained the highest concentrations of total BAs, particularly, HIS, TYR, and CAD. TBA content showed significant positive correlations with TMC in the examined cheese types. The recorded EDI values of the different BAs in the current study would not have adverse effects. However, excessive consumption of cheese contaminated with BA might have serious health implications such as symptoms of histamine poisoning. Therefore, the adoption of strict hygienic measures during the production, storage, and distribution of cheese is highly recommended to reduce the formation of BAs in cheese.
Показать больше [+] Меньше [-]Melt-spun modified poly (styrene-co-butyl acrylate) fiber as a carrier to support manganese oxide and its application in dye wastewater decolorization
2020
Xu, Naiku | Ning, Liqun | Chen, Shunqiang | Hao, Zhifen | Xiao, Changfa | Zhang, Xiangwu | Feng, Yan
Polymer fiber, a kind of versatile material, has been widely used in many fields. However, emerging applications still urge us to develop some new kinds of fibers. Advanced oxidation processes (AOPs) have created a promising prospect for organic wastewater decontamination; thus, it is of important significance to design a kind of special fiber that can be applied in AOPs. In this work, a viable route is proposed to fabricate manganese oxide-supporting melt-spun modified poly (styrene-co-butyl acrylate) fiber, and the prepared fiber has an excellent activity to catalyze H₂O₂ and O₃ to decolorize dye-containing water. The results show that the decolorization of a cationic blue solution can be completely accomplished within 10 min with the prepared fiber as a catalyst, and its decolorization efficiency can reach up to 96.2% within 40 min. The concentration of total organic carbon can decrease from 20.3 to 12.3 mg/L. The prepared fiber can be reused five times without any loss in decolorization efficiency. Compared with other manganese oxide-based catalysts reported in the literature, the prepared fiber also shows many advantages in decolorizing methylene blue such as easy separation, mild reaction condition, and high decolorization efficiency. Therefore, we are confident that the fiber introduced in this study will exhibit a great application potential in the field of dye wastewater treatment.
Показать больше [+] Меньше [-]Effects on the Growth and Digestive Enzyme Activity in Nile Tilapia Fry (Oreochromis niloticus) by Lead Exposure
2020
Álvarez-González, C. A. | Martínez-Sánchez, L. | Peña-Marín, E. S. | Guerrero-Zárate, R. | Jesús-Ramírez, F. | Morales-García, V. | Uribe-López, M. | Núñez-Nogueira, G.
Lead is a metal capable of affecting physiology and metabolism in fish, including Nile tilapia (Oreochromis niloticus). However, few studies have evaluated the effects of lead on digestive enzyme activities in fry. At that stage, independent feeding begins, and there is increased demand and consumption of food, so chronic exposure to metal during this stage of development would cause null or minimal growth in organisms. In this study, fry from Nile tilapia was used to evaluate the effects of lead acetate by chronic exposure on the growth and the activities of the digestive enzymes after 30 and 60 days exposures. Four treatment groups 0.025, 0.050, 0.075 and 0.100 mg/L of lead acetate and a lead-free control were established. The activity of enzymes decreased, in the case of acidic proteases after 30 days and lipases after 60 days of exposure, from 0.025 and 0.050 mg/L of lead acetate, respectively. The amylase activity increased in metal-treated, while the chymotrypsin decreased partially at 60 days. Lipases decreasing activity might be causing an increase of triglycerides (lipids) and body mass observed during the first 30 days of exposure. Concentrations, equal to or above 0.075 mg Pb/L, cause significant effects on size and weight of fry, with nearly 54% lower than controls. At chronic exposure and early stage of development, the enzymatic activity is partially reduced along with body weight gain, which would affect subsequent growing and aquaculture production. The digestive enzyme response is discussed as a possible limited biomarker of exposure, to be used in biomonitoring.
Показать больше [+] Меньше [-]Acute Toxicity, Bioaccumulation, and Bioreduction of Two Antibiotics, Norfloxacin and Ofloxacin, in the Snail Bellamya aeruginosa
2020
He, Shuwen | Sun, Qinyu | Liu, Yu | Li, Ling | Yang, Xiangfei
Fluoroquinolones (FQs) present in water environments pose threats to aquatic organisms. The concentration of FQs adsorbed onto sediments is generally higher than that in water. Here, we studied the toxicities of two FQ antibiotics, norfloxacin (NOR) and ofloxacin (OFL), on the snail Bellamya aeruginosa, an adaptable benthic animal. For this, we performed acute toxicity experiments on young snails and sub-chronic exposure experiments on adult snails by exposure to the FQs for 1–28 days. The 96 h median effective concentrations showed that NOR toxicity was higher than OFL toxicity, although both NOR and OFL were low-toxicity substances (EC₅₀ > 100 mg L⁻¹). Four concentrations were used in the sub-chronic exposure experiments. Results of the measurement of bioconcentration factors (BCF) showed that OFL accumulation was higher than NOR accumulation in snail tissues. During the depuration period (28–49 days), at low concentrations (2 and 20 μg L⁻¹), both FQs required at least 7 days to reach the maximum residue limit (50 μg kg⁻¹). Conversely, at high concentrations (200 and 2000 μg L⁻¹), 14 days (NOR) and 21 days (OFL) were required. Our results could facilitate management of the environmental risks of antibiotics and conservation of aquatic animals.
Показать больше [+] Меньше [-]Accumulation of Heavy Metals and As in the Fern Blechnum orientale L. from Guangdong Province, Southern China
2020
Yu, Hailing | Li, Shiyu | Wang, Aihua | Kuang, Yuanwen | Wang, Faguo | Xing, Fuwu
Blechnum orientale L. is a traditional, medicinal fern found in China. To assess the characteristics of heavy metals and As accumulation, the fronds, roots, and the rooting soils of this fern were sampled from urban, suburban, and rural woodlands across Guangdong Province in southern China. The concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn in both the fern and its rooting soils were separately detected by ICP-MS. Contamination levels of woodland rooting soils were also assessed using both a single pollution index and the Nemerow pollution index. Both the metal concentrations and the pollution index showed that soils from urban, suburban, and even rural woodlands were adversely contaminated by As, Cd, Hg, and Pb. Based on transfer factor, B. orientale had good translocation of As, Hg, and Mn, but poor translocation of Cd, Cr, Ni, Cu, Ni, Pb, and Zn from the roots to the fronds. This result suggests that this fern could be an excluder to latter metals. Despite the significantly higher levels of metals in the roots as compared with the fronds, the low bioaccumulation factor suggests that this fern has a weak capacity for metal accumulation.
Показать больше [+] Меньше [-]Effects of Ions on THM Formation During Chlorination of Bromide-Containing Water
2020
Ta, Na | Li, Chenghao | Wang, Yi | An, Wuyun
Disinfection byproducts (DBPs) have attracted extensive attention due to their adverse health effects such as genotoxicity, mutagenicity, and carcinogenicity. With higher formation potential and occurrence in all disinfection processes, trihalomethanes (THMs) are one of the most significant DBPs. Since ions are universally existent by natural or anthropogenic input to groundwater or surface water, the effects of ions (Ca²⁺, Mg²⁺, NH⁺₄, As³⁺, Fe³⁺, Al³⁺, Cu²⁺, and F⁻) on THM formation during chlorination in bromide-containing water were investigated in the present study. The results showed that THM formation and speciation were substantially influenced by the ions, but the degree and mechanisms of effects were critically dependent on the ion species. THM formation was inhibited by Ca²⁺, Mg²⁺, As³⁺, and NH⁺₄ significantly, and was enhanced by Fe³⁺, Cu²⁺, and Al³⁺. The mechanisms of influence of the above ions were interpreted for complexation, consumption, and catalysis. Furthermore, due to the higher Br⁻ concentration, CHBr₃ was the dominant species in THMs.
Показать больше [+] Меньше [-]Properties of CaO2 for H2O2 release and phosphate removal and its feasibility in controlling Microcystis blooms
2020
Hu, Yiwei | Shen, Liang | Ren, Xuanqi | Bi, Yonghong | Hu, Baowei | Wang, Binliang
Calcium peroxide (CP) has been widely applied in environmental remediation, but few studies have reported its application in controlling Microcystis blooms. To recognize its feasibility for mitigating Microcystis blooms, the properties of CP in terms of hydrogen peroxide (HP) release and phosphate removal were investigated at different CP doses, temperatures, and initial pH values. HP release kinetics followed the Higuchi model. Batch experiments conducted in this study suggested that the HP yield and release rate were positively correlated with the CP dose. Increasing temperature decreased the HP yield but accelerated the HP release rate. The phosphate removal kinetics were well simulated by the pseudo-second-order model. The batch experiments suggested that an increased CP dose enhanced the phosphate removal capacity, but it did not affect the phosphate removal rate. Moreover, increased temperature accelerated both phosphate removal capacity and rate. However, the initial pH of low-buffer-capacity solutions did not notably affect HP release and phosphate removal. According to laboratory experiments, HP released from CP could impair photosynthetic activity, resulting in Microcystis mortality. Furthermore, the reduced phosphate concentration in the solutions suggested that CP could facilitate the control of eutrophication, which directly reduced bloom formation. Hence, our results confirmed CP as a promising algicide for Microcystis bloom control, and it is worthwhile to develop novel methods for bloom mitigation based on CP. Graphic abstract
Показать больше [+] Меньше [-]