Уточнить поиск
Результаты 321-330 из 7,292
Chronic carbon black nanoparticles exposure increases lung cancer risk by affecting the cell cycle via circulatory inflammation Полный текст
2022
Zhang, Jianzhong | Li, Xin | Cheng, Wenting | Li, Yanting | Shi, Teng | Jiang, Yingying | Wang, Tao | Wang, Hongmei | Ren, Dunqiang | Zhang, Rong | Zheng, Yuxin | Tang, Jinglong
As a widely used pure elemental carbon in colloidal particles, carbon black was listed as a group 2B carcinogen by IARC in 2010. The most available mechanism information about carbon black and carcinogenesis are from in vivo or in vitro studies. However, few studies concerned the nanoparticle's real-ambient exposure causing systemic change and further affecting the target organ. Herein, we used an ex vivo biosensor assay to investigate the transcriptome change of primary bronchial epithelial cells after treatment with the plasma from workers with long-term occupational carbon black exposure history. Based on ex vivo biosensor assay and transcriptome sequencing, we found the effect of internal systemic environment on epithelial cells after carbon black exposure was an inflammatory response, which mainly activates cell cycle-related pathways. After exposure to carbon black, the internal systemic environment could activate cancer-related pathways like epithelial-mesenchymal transition, hypoxia, TNF-α signaling via NF-κB. The hub genes in the carbon black group (CDC20 and PLK1) and their correlation with the systemic environment were uncovered by constructing the protein-protein interaction network. Inflammatory cytokines, especially CRP, were strongly correlated with the expression of CDC20 and PLK1. Besides, we also find a strong correlation between CDC20 and cytokinesis-block micronucleus endpoints in peripheral blood (rho = 0.591, P < 0.001). Our results show that long-term carbon black exposure might activate cell cycle-related pathways through circulating inflammation and increase the risk of cancer, while the oxidative stress caused by diesel exhaust particles are mainly related to PAHs exposure. After exposure to carbon black, the systemic environment could activate cancer-related pathways like diesel exhaust particles, increasing the risk of lung cancer. These attempts might provide a further understanding of the indirect effect of chronic occupational inhaled carbon black exposure on pulmonary carcinogenesis.
Показать больше [+] Меньше [-]Bioelectrochemical system for dehalogenation: A review Полный текст
2022
Zhu, Xuemei | Wang, Xin | Li, Nan | Wang, Qi | Liao, Chengmei
Halogenated organic compounds are persistent pollutants, whose persistent contamination and rapid spread seriously threaten human health and the safety of ecosystems. It is difficult to remove them completely by traditional physicochemical techniques. In-situ remediation utilizing bioelectrochemical technology represents a promising strategy for degradation of halogenated organic compounds, which can be achieved through potential modulation. In this review, we summarize the reactor configuration of microbial electrochemical dehalogenation systems and relevant organohalide-respiring bacteria. We also highlight the mechanisms of electrode potential regulation of microbial dehalogenation and the role of extracellular electron transfer in dehalogenation process, and further discuss the application of bioelectrochemical technology in bioremediation of halogenated organic compounds. Therefore, this review summarizes the status of research on microbial electrochemical dehalogenation systems from macroscopic to microscopic levels, providing theoretical support for the development of rapid and efficient in situ bioremediation technologies for halogenated organic compounds contaminated sites, as well as insights for the removal of refractory fluorides.
Показать больше [+] Меньше [-]The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy Полный текст
2022
Huang, Bo-Yang | Zhao, Fang-Jie | Wang, Peng
Cadmium (Cd) and arsenic (As) are loaded into rice grain via two pathways: i) root uptake from the soil and then translocation to the grain, and ii) remobilization of Cd and As previously accumulated within the vegetative tissues to the grain. However, the relative contributions of the two pathways are not well understood in soil-grown rice plants. In this study, we used eight different water management regimes applied at different growth periods to manipulate the concentrations of Cd and As in porewater and then established a mathematical model to estimate the relative importance of the two pathways. Different water management regimes had dramatic and opposite effects on the solubility of Cd and As in soil, and their subsequent accumulation in both straw and grain. Water management applied at different growth periods had markedly different impacts on grain Cd and As concentrations. Water management during grain filling had a much greater impact on grain Cd than on grain As concentrations, whereas water treatment during the vegetative growth stage had a larger effect on grain As concentrations. Under the typical water management practice (i.e. flooding through the vegetative stage followed by drainage during grain filling), grain filling is the key period for the accumulation of Cd in the grain, with 98% of the grain Cd from root uptake during this period and the contribution of remobilization being very limited. In contrast, 95% of the grain As was remobilized from that accumulated within the plant prior to the grain filling, with the tillering, jointing, and heading period each contributing 20–40% of the grain As, whereas root uptake during grain filling contributed minor. These differences can be harnessed to design a segmented water management strategy to control grain Cd and As accumulation simultaneously.
Показать больше [+] Меньше [-]Global PBDE contamination in cetaceans. A critical review Полный текст
2022
Bartalini, Alice | Muñoz-Arnanz, Juan | García-Álvarez, Natalia | Fernández, Antonio | Jiménez, Begoña
This review summarizes the most relevant information on PBDEs’ occurrence and their impacts in cetaceans at global scale, with special attention on the species with the highest reported levels and therefore the most potentially impacted by the current and continuous release of these substances. This review also emphasizes the anthropogenic and environmental factors that could increase concentrations and associated risks for these species in the next future. High PBDE concentrations above the toxicity threshold and stationary trends have been related to continuous import of PBDE-containing products in cetaceans of Brazil and Australia, where PBDEs have never been produced. Non-decreasing levels documented in cetaceans from the Northwest Pacific Ocean might be linked to the increased e-waste import and ongoing production and use of deca-BDE that is still allowed in China. Moreover, high levels of PBDEs in some endangered species such as beluga whales (Delphinapterus leucas) in St. Lawrence Estuary and Southern Resident killer whales (Orcinus Orca) are influenced by the discharge of contaminated waters deriving from wastewater treatment plants. Climate change related processes such as enhanced long-range transport, re-emissions from secondary sources and shifts in migration habits could lead to greater exposure and accumulation of PBDEs in cetaceans, above all in those species living in the Arctic. In addition, increased rainfall could carry greater amount of contaminants to the marine environment, thereby, enhancing the exposure and accumulation especially for coastal species. Synergic effects of all these factors and ongoing emissions of PBDEs, expected to continue at least until 2050, could increase the degree of exposure and menace for cetacean populations. In this regard, it is necessary to improve current regulations on PBDEs and broader the knowledge about their toxicological effects, in order to assess health risks and support regulatory protection for cetacean species.
Показать больше [+] Меньше [-]Catchment-scale microbial sulfate reduction (MSR) of acid mine drainage (AMD) revealed by sulfur isotopes Полный текст
2022
Fischer, Sandra | Jarsjö, Jerker | Rosqvist, Gunhild | Mörth, Carl-Magnus
Laboratory experiments and point observations, for instance in wetlands, have shown evidence that microbial sulfate reduction (MSR) can lower sulfate and toxic metal concentrations in acid mine drainage (AMD). We here hypothesize that MSR can impact the fate of AMD in entire catchments. To test this, we developed a sulfur isotope fractionation and mass-balance method, and applied it at multiple locations in the catchment of an abandoned copper mine (Nautanen, northern Sweden). Results showed that MSR caused considerable, catchment-scale immobilization of sulfur corresponding to a retention of 27 ± 15% under unfrozen conditions in the summer season, with local values ranging between 13 ± 10% and 53 ± 18%. Present evidence of extensive MSR in Nautanen, together with previous evidence of local MSR occurring under many different conditions, suggest that field-scale MSR is most likely important also at other AMD sites, where retention of AMD may be enhanced through nature-based solutions. More generally, the developed isotope fractionation analysis scheme provides a relatively simple tool for quantification of spatio-temporal trends in MSR, answering to the emerging need of pollution control from cumulative anthropogenic pressures in the landscape, where strategies taking advantage of MSR can provide viable options.
Показать больше [+] Меньше [-]The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants Полный текст
2022
Kaya, Cengiz | Sarıoglu, Ali | Ashraf, Muhammad | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H₂O₂, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
Показать больше [+] Меньше [-]Quinolone antibiotics enhance denitrifying anaerobic methane oxidation in Wetland sediments: Counterintuitive results Полный текст
2022
Zhao, Yuewen | Jiang, Hongchen | Wang, Xiuyan | Liu, Changli | Yang, Yuqi
Denitrifying anaerobic methane oxidation (DAMO) plays an important role in the element cycle of wetlands. In recent years, the content of antibiotics in wetlands has gradually increased due to human activities. However, the impact of antibiotics on the ecological function of DAMO remains unclear. Here we studied the influence of three high-content quinolone antibiotics (QNs) on DAMO in the sediments of the Baiyangdian Wetland. The results show that QNs can significantly promote the potential DAMO rates. Moreover, the enhancement of potential DAMO rates is positively correlated with the dosage of QNs. This promotion effect of QNs on nitrate-DAMO can be attributed to the hormesis phenomenon or their inhibition of substrate competitors. As antibacterial agents, QNs inhibit nitrite-DAMO conducted by bacteria, but greatly promote nitrate-DAMO conducted by archaea. These results suggest that the short-term effect of QNs on DAMO in wetlands is promotion rather than inhibition.
Показать больше [+] Меньше [-]Arsenic accumulation in rice: Alternative irrigation regimes produce rice safe from arsenic contamination Полный текст
2022
Rokonuzzaman, MD. | Ye, Zh | Wu, C. | Li, Wc
The natural occurrence of arsenic (As) in groundwater & soils and its bioaccumulation in rice grains is a major health concern worldwide. To combat the problem, best combination of irrigation management and suitable rice variety altering As content in grains must be ensured. With this aim, a field trial was conducted with two rice varieties and water management including alternate wetting and drying (AWD) and continuous flooding (CF) irrigation regimes with As contaminated groundwater (AsW) and temporarily stored groundwater (TSG) and river water for only CF (as control). Results revealed that As content in different portions of paddy plant was significantly different (P < 0.001) with irrigation practices and rice varieties. AWD irrigation with TSG accumulated lower As in rice grains compared with CF-AsW for both varieties. Data showed that AWD-TSG practice led to 61.37% and 60.34% grain As reduction for BRRI dhan28 and BRRI dhan29, respectively, compared with CF-AsW. For Principle Component Analysis (PCA), first principle component (PC1) explained 91.7% of the variability and irrigation water As, soil total and available As, straw As, root As and husk As were the dominating parameters. With significant (P < 0.05) variation in yields between the genotypes, AWD increased grain yield by 29.25% in BRRI dhan29 Compared with CF. However, translocation factor (TF) and bioconcentration factor (BCF) for both varieties were less than one for all the treatments. The addition of this study to our knowledge base is that, AWD-TSG with BRRI dhan29 can be an As–safe practice without compromising yields.
Показать больше [+] Меньше [-]Enrichment and removal of five brominated flame retardants in the presence of co-exposure in a soil-earthworm system Полный текст
2022
Qiao, Zhihua | Lu, Cong | Han, Yanna | Luo, Kailun | Fu, Mengru | Zhou, Shanqi | Peng, Cheng | Zhang, Wei
Brominated flame retardants (BFRs) are widely used because of their excellent flame retardant performance and are frequently detected in the soil environment. Their adverse impacts on soil organisms cannot be ignored. The enrichment and removal dynamics of the five BFRs (pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209)) in earthworms and different tissues (epidermis, intestinal tract, and cast) in the presence of co-exposure were explored for the first time. The results showed that the enrichment of the five BFRs in earthworms increased with increasing exposure concentration and time. The distribution of these chemicals in different tissues of earthworms was different. The contents of HBB and PBT in the intestine and epidermis were the highest and were more than 60% during most of the time. Additionally, the contents of BTBPE, BDE209, and DBDPE were significantly increased while the contents of HBB and PBT were significantly decreased in the cast. The correlation analysis indicated that HBB and PBT had a significant relationship in all the tissues, but BDE209 and DBDPE only had a relationship in the cast, which might be attributed to the structure of the pollutants. Additionally, the experiments illustrated that earthworms had strong removal for HBB and PBT, but were weak for DBDPE and BDE209.
Показать больше [+] Меньше [-]New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea Полный текст
2022
Delacuvellerie, A. | Géron, A. | Gobert, S. | Wattiez, R.
New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea Полный текст
2022
Delacuvellerie, A. | Géron, A. | Gobert, S. | Wattiez, R.
Plastic debris are accumulating in the marine environment and aggregate microorganisms that form a new ecosystem called the plastisphere. Better understanding the plastisphere is crucial as it has self-sufficient organization and carries pathogens or organisms that may be involved in the pollutant adsorption and/or plastic degradation. To date, the plastisphere is mainly described at the taxonomic level and the functioning of its microbial communities still remains poorly documented. In this work, metagenomic and metaproteomic analyzes were performed on the plastisphere of polypropylene and polyethylene plastic debris sampled on a pebble beach from the Mediterranean Sea. Our results confirmed that the plastisphere was organized as self-sufficient ecosystems containing highly active primary producers, heterotrophs and predators such as nematode. Interestingly, the chemical composition of the polymer did not impact the structure of the microbial communities but rather influenced the functions expressed. Despite the fact that the presence of hydrocarbon-degrading bacteria was observed in the metagenomes, polymer degradation metabolisms were not detected at the protein level. Finally, hydrocarbon degrader (i.e., Alcanivorax) and pathogenic bacteria (i.e., Vibrionaceae) were observed in the plastispheres but were not very active as no proteins involved in polymer degradation or pathogeny were detected. This work brings new insights into the functioning of the microbial plastisphere developed on plastic marine debris.
Показать больше [+] Меньше [-]New insights into the functioning and structure of the PE and PP plastispheres from the Mediterranean Sea Полный текст
2022
Delacuvellerie, Alice | Géron, A | Gobert, Sylvie | Wattiez, Rudi | STARESO | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Plastic debris are accumulating in the marine environment and aggregate microorganisms that form a new ecosystem called the plastisphere. Better understanding the plastisphere is crucial as it has self-sufficient orga- nization and carries pathogens or organisms that may be involved in the pollutant adsorption and/or plastic degradation. To date, the plastisphere is mainly described at the taxonomic level and the functioning of its microbial communities still remains poorly documented. In this work, metagenomic and metaproteomic analyzes were performed on the plastisphere of polypropylene and polyethylene plastic debris sampled on a pebble beach from the Mediterranean Sea. Our results confirmed that the plastisphere was organized as self-sufficient eco- systems containing highly active primary producers, heterotrophs and predators such as nematode. Interestingly, the chemical composition of the polymer did not impact the structure of the microbial communities but rather influenced the functions expressed. Despite the fact that the presence of hydrocarbon-degrading bacteria was observed in the metagenomes, polymer degradation metabolisms were not detected at the protein level. Finally, hydrocarbon degrader (i.e., Alcanivorax) and pathogenic bacteria (i.e., Vibrionaceae) were observed in the plas- tispheres but were not very active as no proteins involved in polymer degradation or pathogeny were detected. This work brings new insights into the functioning of the microbial plastisphere developed on plastic marine debris.
Показать больше [+] Меньше [-]