Уточнить поиск
Результаты 3521-3530 из 4,937
Optimization of phosphate recovery as struvite from synthetic distillery wastewater using a chemical equilibrium model Полный текст
2019
Kumari, Soni | Jose, Sanoj | Jagadevan, Sheeja
This study investigates the feasibility of recovery of phosphorus via struvite precipitation from a synthetic anaerobically treated distillery spent wash by optimizing the process using a chemical equilibrium model, namely Visual MINTEQ. Process parameters such as Mg²⁺, [Formula: see text], and [Formula: see text] ion concentrations and pH were used as inputs into the model. Increasing the molar ratio of [Formula: see text] from 0.8:1 to 1.6:1 at pH 9 led to an increase in phosphate recovery from 88.2 to 99.5%. The model and experimental results were in good agreement in terms of phosphate recovery, indicating that the Visual MINTEQ model can be used to pre-determine the process parameters for struvite synthesis. Increasing the concentration of calcium ion adversely affected the synthesis and purity of struvite, whereas the presence of melanoidins had no significant impact. This study demonstrates that phosphorus recovery through struvite precipitation is a sustainable approach to reclaim phosphorus from high-strength industrial wastewater.
Показать больше [+] Меньше [-]Air pollution inequality and health inequality in China: An empirical study Полный текст
2019
Azimi, Mohaddeseh | Feng, Feng | Zhou, Chongyang
China’s residents experience unequal exposure to air pollution in different regions, and the corresponding health consequences have increased remarkably. To ensure sustainable development, China should monitor health inequality and its potential determinants. This study empirically examines the health inequalities (represented by perinatal and tuberculosis mortalities) caused by air pollution inequalities (represented by SO₂ and NOₓ emissions) from 31 Chinese provinces in the period 2006 to 2015, using the generalized method of moments (GMM) and quantile regression (QR). The GMM results reveal a strong positive relationship between SO₂/NOₓ emission inequality and tuberculosis mortality inequality. In contrast, the QR results show that perinatal mortality inequality is closely related to emission inequality across all percentiles for SO₂ emission and at the 75th percentile for NOₓ emission. Our findings help policymakers to identify health disparities and be mindful of air pollution inequality as a factor in the elimination of health inequality.
Показать больше [+] Меньше [-]Tripolyphosphate-assisted electro-Fenton process for coking wastewater treatment at neutral pH Полный текст
2019
Deng, Fengxia | Qiu, Shan | Zhu, Yingshi | Zhang, Xiaojiao | Yang, Jixian | Ma, Fang
The first application of a novel electro-Fenton (EF) for coking wastewater (CW) treatment at the original pH (6.80) by using tripolyphosphate (TPP) ligand was proposed. Total organic carbon (TOC) decay of CW followed a pseudo-first kinetic rate constant with an apparent rate constant (kₐₚₚ) of 1.07 × 10⁻² min⁻¹ for the EF in the presence of TPP (EF/TPP), which was 2.10 times higher than that of conventional EF (kₐₚₚ = 5.10 × 10⁻³ min⁻¹) working at pH 3. The high efficiency of EF/TPP at neutral pH was mainly attributed to the newly formed Fe-O-P coordination in the iron-ligand compound (Fe²⁺-TPP) supported by UV-absorption spectra results, activating oxygen to produce •OH and hence enhancing the oxidation capacity. Key operating parameters of CW mineralization by EF/TPP including Fe²⁺ concentration and pH value were systematically investigated. Excitation-emission matrix (EEM) spectra technique was used to assess the variance of dissolved organic matters during the EF/TPP process. Results showed an 81% mineralization of CW after 3 h electrolysis coupled with a low energy consumption (0.129 kWh g⁻¹ TOC) which were obtained by the EF/TPP process. Microtox toxicity demonstrated that TPP could reduce the toxicity of raw CW and importantly, it showed that EF/TPP was effective for detoxification. Mechanism study via simulated matrix with similar components as CW revealed that •OH produced both from Fenton and Fe²⁺-TPP activation together with the generated active chlorine was responsible for CW mineralization. In summary, the TPP-assisted EF process was presented as a promising technique for extending coking wastewater treatment at near-neutral pH with a high mineralization.
Показать больше [+] Меньше [-]Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system Полный текст
2019
Iswarya, Velu | Palanivel, Abirami | Chandrasekaran, Natarajan | Mukherjee, Amitava
In the current study, the effect of different types of titanium dioxide (TiO₂) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on Ceriodaphnia dubia in the presence of algae under distinct irradiation conditions such as visible and UV-A. The toxicity experiments were performed in sterile freshwater to mimic the chemical composition of the freshwater system. In addition, the oxidative stress biomarkers such as MDA, catalase, and GSH were analyzed to elucidate the stress induced by the NPs on daphnids. Individually, both rutile and anatase NPs induced similar mortality under both visible and UV-A irradiations at all the test concentrations except 600 and 1200 μM where rutile induced higher mortality under UV-A. Upon visible irradiation, the binary mixture exhibited a synergistic effect at their lower concentration and an additive effect at higher concentrations. In contrast, UV-A irradiation demonstrated the additive effect of mixture except for 1200 μM which elucidated antagonistic effect. Mathematical model confirmed the effects of the binary mixture. The surface interaction between the individual NPs in the form of aggregation played a pivotal role in the induction of specific effects exhibited by the binary mixture. Oxidative stress biomarkers were highly increased upon NPs exposure especially under visible irradiation. These observations elucidated that the irradiation and crystallinity effect of TiO₂ NPs were noted only on certain biomarkers and not on the mortality.
Показать больше [+] Меньше [-]Modeling long-term performance of full-scale anaerobic expanded granular sludge bed reactor treating confectionery industry wastewater Полный текст
2019
Dereli, Recep Kaan
Production and consumption of confectionery products, such as chocolate, sugar, and cookies, have increased worldwide. Thus, management and treatment of confectionery effluents, as one of the most important agro-industrial wastewaters, become essential. Confectionery industries produce high-strength and highly biodegradable wastewaters that are appropriate for biological treatment prior to discharge. In this study, long-term dynamic performance of a full-scale anaerobic expanded granular sludge bed (EGSB) reactor treating confectionery effluent was simulated by using Anaerobic Digestion Model No. 1 (ADM1). Substrate fractionation was carried out based on the ADM1 state variables, and then, the model was calibrated with 300 days of operation data. The calibrated model could capture the dynamic performance of the anaerobic reactor for a long validation period of 500 days. Although the reactor was operated under highly fluctuating volumetric loading rates (VLR) between 0.2 and 5 kg chemical oxygen demand (COD)/m³ day, the model results indicated medium to high prediction accuracy for effluent COD, methane generation, total volatile fatty acids (VFA), and pH parameters. Mean relative absolute errors for COD, methane flow, VFA, and pH parameter simulations were 22%, 16%, 29%, and 1%, respectively. The study presents the applicability of ADM1 for full-scale reactors treating industrial wastewaters.
Показать больше [+] Меньше [-]Suitable habitat prediction of Sichuan snub-nosed monkeys (Rhinopithecus roxellana) and its implications for conservation in Baihe Nature Reserve, Sichuan, China Полный текст
2019
As an endemic primate species with one of the highest priorities in wildlife conservation in China, Sichuan snub-nosed monkeys (Rhinopithecus roxellana) have undergone a sharp decline and range reduction in recent centuries. Here, we used maximum entropy modelling (MaxEnt) integrated with four types of environmental variables, including three biological climate variables (Bio17, precipitation of the driest quarter; Bio6, min. temperature of the coldest month; and Bio2, mean diurnal range), three topographic variables (altitude, slope, and aspect), two anthropogenic variables (Human Footprint Index and human disturbance), and three vegetation-related variables (enhanced vegetation index, normalized difference vegetation index, and Wet Index) to identify the spatial distribution of suitable habitats for Sichuan snub-nosed monkeys in Baihe Nature Reserve (BNR), which is located in the Minshan Mountains. The average training AUC of our model performance is 0.929 ± 0.003. The model predicted 9.6 km² of high suitability habitats and 14.1 km² of moderate suitability habitats for Sichuan snub-nosed monkeys, adding up to only 11.7% of the total area of concern for the study in the BNR. The top four variables ranked in the model (altitude, Human Footprint Index, human disturbance, and Bio17) accounted for relative gain contributions of 23.3%, 19.3%, 14.2%, and 13.4%, respectively. The predicted suitable habitats were confined to an altitude range of 1971–3198 m, Human Footprint Index of mainly 3–5 values, low human disturbance (mainly livestock), and precipitation of the driest (or coldest) quarter of 9–22 mm. Additionally, the suitable habitats were mainly distributed in the core zone (36.1%), buffer zone (26.8%), and experimental zone (29.5%). The remaining habitats (7.6%) were distributed in the 0.5-km buffer zone of the reserve border. The predicted suitable habitats indicated limited suitable habitat space for the Sichuan snub-nosed monkeys, with most of the suitable habitat distributed outside the core zone in the BNR. Our findings highlighted that human activities in all three functional zones could be the most negative factor on suitable habitat distribution of Sichuan snub-nosed monkeys in the BNR.
Показать больше [+] Меньше [-]The suitability of growing mulberry (Morus alba L.) on soils consisting of urban sludge composted with garden waste: a new method for urban sludge disposal Полный текст
2019
Si, Liqing | Peng, Xiawei | Zhou, Jinxing
Efficient disposal of urban sewage sludge, material that typically contains high concentrations of heavy metals, has become a significant concern worldwide. The empirical purpose of the current study is to investigate physical and chemical parameters of composted sludge and garden waste at different ratios. Results reveal that nutrient content has significantly increased after the application of composts as compared to the controlled sample. Composting garden waste with sewage sludge at a 1:1 ratio promoted plant growth and gradually showed superiority in the later period. The maximum plant height, total biomass, and crown width of mulberry trees increased by 12.1, 33.5, and 45.7%, respectively, compared with the control treatment. The bound to organic matter of Hg, Cr, and Pb in the sewage sludge increased after composting with garden waste, and the mulberry exhibited a high ability to accumulate Ni and Cd from the soil. Conclusively, compared to using the two soil mediums separately, composting garden waste and sewage sludge together is beneficial for soil improvement and vegetation growth.
Показать больше [+] Меньше [-]Using Shannon entropy to model turbulence-induced flocculation of cohesive sediment in water Полный текст
2019
Zhu, Zhongfan | Peng, Dingzhi
Turbulence-induced flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters via the complex processes of sediment transport, deposition, resuspension and consolidation. In this study, the concept of Shannon entropy based on probability is applied to modelling turbulence-induced flocculation of cohesive sediment in water. Using the hypothesis regarding the cumulative distribution function, the function of floc size with flocculation time is derived by assuming a characteristic floc size as a random variable and maximizing the Shannon entropy, subject to certain constraints. The Shannon entropy-based model is capable of modelling the variation in floc size as the flocculation time progresses from zero to infinity. The model is tested against some existing experimental data from the literature and against a few deterministic mathematical models. The model yields good agreement with the observed data and yields better prediction accuracy than the other models. The parameter that has been incorporated into the model exhibits an empirical power-law relationship with the flow shear rate. An empirical model formulation is proposed, and it exhibits high prediction accuracy when applied to existing experimental data.
Показать больше [+] Меньше [-]Bidens pilosa L. hyperaccumulating Cd with different species in soil and the role of EDTA on the hyperaccumulation Полный текст
2019
Dou, Xuekai | Dai, Huiping | Skuza, Lidia | Wei, Shuhe
Investigating whether the same hyperaccumulator shows a high accumulation potential for different species of the same heavy metal in the soil has rarely been considered until now. In this experiment, Cd accumulation by a hyperaccumulator Bidens pilosa L. from soils spiked with 3 and 9 mg Cd kg⁻¹ in the form of Cd(NO₃)₂, CdCl₂, CdBr₂, CdI₂, CdSO₄, CdF₂, Cd(OH)₂, CdCO₃, Cd₃(PO₄)₂, and CdS and effect of soil amendment with EDTA were determined. The results showed that the Cd concentrations in B. pilosa for high-solubility species were basically higher. But the enrichment factors (EFs) (shoot to soil Cd concentration ratio) and translocation factors (TFs) (shoot to root Cd concentration ratio) of low-solubility Cd species were all greater than 1, either indicating that there was a high Cd hyperaccumulative potentials of B. pilosa without considering on Cd species in soil. EDTA significantly improved B. pilosa Cd hyperaccumulation, especially for low-solubility Cd forms in soils. These results can perfectly explain the accumulation properties of one hyperaccumulator to different species of the same heavy metal. Phytoremediation may be applied for a wide scope for different Cd species–contaminated soil. Moreover, the total amount of Cd in soil was important when assessing the risk of Cd-contaminated soils.
Показать больше [+] Меньше [-]Combustion, performance, and emissions of a compression ignition engine using Pongamia biodiesel and bioethanol Полный текст
2019
Dinesha, Pijakala | Kumar, Shiva | Rosen, Marc A.
Concerns over the depletion of conventional fuels have increased interest in new renewable energy sources like alcohol- and vegetable-based oils. Major drawbacks of using esters of vegetable oils, known as biodiesel, include reduced engine performance and increased emissions of oxides of nitrogen. In the present study, the effects of ethanol on biodiesel and mineral diesel blends in a diesel engine are experimentally investigated. The ethanol is produced from cashew apple juice by fermentation. Experiments are conducted using B20 Pongamia biodiesel with ethanol in proportions of 5, 7.5, and 10% by volume at varying load conditions. The results indicate that a B20 biodiesel blend with 7.5% ethanol yields a higher brake thermal efficiency and lower brake-specific energy consumption than pure B20 (20% biodiesel + 80% diesel), as well as significantly reduced emissions such as oxides of nitrogen, carbon monoxide, hydrocarbons, and smoke.
Показать больше [+] Меньше [-]