Уточнить поиск
Результаты 371-380 из 448
Simulated Effects of Acidic Solutions on Element Dynamics in Monsoon Evergreen Broad-leaved Forest at Dinghushan, China - Part 1: Dynamics of K, Na, Ca, Mg and P (7 pp) Полный текст
2007
Liu, Juxiu
Background, Aim and Scope Acid deposition has become a concern in south China in recent years. This phenomenon has increased to a dramatic extent with the large use of cars and coal- fueled power plants. As a consequence, soils are becoming acidified and their element dynamics will change. A decrease in the nutrient availability will lead to slower plant growth and maybe to a change in the forest type with current species being replaced by new ones with less nutrient requirements. Because of these reasons, it is important to understand how the dynamics of elements will change and what mechanism is part of the process. This knowledge is important for modeling the acidification process and either finding ways to counter it or to predict its consequences. The primary purpose of this study was to provide information about how the dynamics of K, Na, Ca, Mg and P are affected by acid deposition in a typical forest in southern China. Materials and Methods: Experimental soils and saplings were collected directly from the monsoon evergreen broad-leaved forest in Dinghushan. All saplings were transplanted individually into ceramic pots in August 2000 and placed in an open area near their origin site. Pot soils were treated weekly from October, 2000 to July, 2002 with an acidic solution at pH 3.05, pH 3.52, pH 4.00 or pH 4.40, or with tap water as a control. The concentrations of SO42-, NO3-, K+, Na+, Ca2+, Mg2+ and available P and the pH were measured in soil and leachate samples taken at different times. The sapling leaves were collected and their element concentrations were measured at the end of the experiment. Results: Concentrations of soil exchangeable Ca and Mg decreased quickly over time, although only Ca showed changes with the acidic solution treatment and soil exchangeable K was stable because of soil weathering. Leaching of K, Mg and Ca was dependent upon the treatment acidity. Soil available P decreased slowly without any correlation with the acidity of the treatment. All the NO3- added by the treatment was taken up by the plants, but the SO42- added accumulated in the soil. Discussion: Amongst the plant species, Schima superba was little affected by the treatment, the leaf P content was affected in Acmena acuminatissima plants and Cryptocarya concinna was the most susceptible species to soil acidification, with a marked decrease of the leaf K, Ca and Mg concentrations when the treatment acidity increased. Conclusions: Simulated acid deposition affected the dynamics of K, Ca and Mg in the monsoon evergreen broad-leaved forest. The dynamics of Ca in the soil and of K, Mg and Ca in the soil leachates were affected by the acidic solution treatment. If such a soil acidification occurs, Cryptocarya concinna will be amongst the first affected species, but Schima superba will be able to sustain a good growth and mineral nutrition. Recommendations and Perspectives: Acid deposition will lead to imbalance the nutrient elements in the evergreen broad-leaved forest because of accelerated leaching losses of soil exchangeable Ca and Mg. Measures should be developed to slow down soil acidification or nutrient decrease.
Показать больше [+] Меньше [-]How standards drive taxes: the political economy of tailpipe pollution Полный текст
2007
Gulati, Sumeet | Roy, Devesh
To control tailpipe pollution, governments often use environmental product standards and consumption taxes in conjunction (for example, the use of fuel economy standards and gasoline taxes to restrict automobile pollution in the US). Further, the choice of standards and consumption taxes is often independently influenced by special interests. For example, domestic producers have the incentive to influence environmental product standards, and likewise, domestic consumers have the incentive to influence the choice of the consumption tax. In this paper we explore the political link between environmental standards and consumption taxes in the presence of independent special interests. We find that despite the independence of special interests, the political outcome is inextricably linked. This political link is different from the welfare maximizing second-best link usually expected between two related policies, and is crucial in correctly anticipating policy outcomes. Specifically, we find that the government's choice of an environmental standard influences political incentives in the choice of the consumption tax. As the environmental standard falls, a higher demand for the environmentally damaging product develops. This higher demand increases the incentives for consumers to lobby for lower consumption tax. Under certain conditions, this political link is large enough to result in a complementary relationship between the two policies in equilibrium. The complementary relationship implies that a lower standard results in a lower consumption tax and vice versa when the standard is higher.
Показать больше [+] Меньше [-]How Plants Cope with Foreign Compounds. Translocation of xenobiotic glutathione conjugates in roots of barley (Hordeum vulgare) (9 pp) Полный текст
2007
Schröder, Peter | Scheer, Christian E | Diekmann, Frauke | Stampfl, Andreas
Background, Aim and Scope Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds which give them similar advantages as animals. Materials and Methods: Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse. - Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). - Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. - Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results: The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. Discussion: It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. - On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. Conclusions: Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. Recommendations and Perspectives: The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exuded metabolites on the biology of rhizosphere bacteria and fungi.
Показать больше [+] Меньше [-]Management of marine cage aquaculture : Environmental carrying capacity method based on dry feed conversion rate Полный текст
2007
Huiwen, Cai | Yinglan, Sun
GOAL, SCOPE AND BACKGROUND: Marine cage aquaculture produces a large amount of waste that is released directly into the environment. To effectively manage the mariculture environment, it is important to determine the carrying capacity of an aquaculture area. In many Asian countries trash fish is dominantly used in marine cage aquaculture, which contains more water than pellet feed. The traditional nutrient loading analysis is for pellet feed not for trash fish feed. So, a more critical analysis is necessary in trash fish feed culturing areas. METHODS: Corresponding to FCR (feed conversion rate), dry feed conversion rate (DFCR) was used to analyze the nutrient loadings from marine cage aquaculture where trash fish is used. Based on the hydrodynamic model and the mass transport model in Xiangshan Harbor, the relationship between the water quality and the waste discharged from cage aquaculture has been determined. The environmental carrying capacity of the aquaculture sea area was calculated by applying the models noted above. RESULTS: Nitrogen and phosphorus are the water quality parameters considered in this study. The simulated results show that the maximum nitrogen and phosphorus concentrations were 0.216 mg/L and 0.039 mg/L, respectively. In most of the sea area, the nutrient concentrations were higher than the water quality standard. The calculated environmental carrying capacity of nitrogen and phosphorus in Xiangshan Harbor were 1,107.37 t/yr and 134.35 t/yr, respectively. The waste generated from cage culturing in 2000 has already exceeded the environmental carrying capacity. DISCUSSION: Unconsumed feed has been identified as the most important origin of all pollutants in cage culturing systems. It suggests the importance of increasing the feed utilization and improving the feed composition on the basis of nutrient requirement. For the sustainable development of the aquaculture industry, it is an effective management measure to keep the stocking density and pollution loadings below the environmental carrying capacity. CONCLUSIONS: The DFCR-based nutrient loadings analysis indicates, in trash fish feed culturing areas, that it is more critical and has been proved to be a valuable loading calculation method. The modeling approach for Xiangshan Harbor presented in this paper is a cost-effective method for assessing the environmental impact and determining the capacity. Carrying capacity information can give scientific suggestions for the sustainable management of aquaculture environments. RECOMMENDATIONS AND PERSPECTIVES: It has been proved that numerical models were convenient tools to predict the environmental carrying capacity. The development of models coupled with dynamic and aquaculture ecology is a requirement of further research. Such models can also be useful in monitoring the ecological impacts caused by mariculture activities.
Показать больше [+] Меньше [-]Organic Contaminants from Sewage Sludge Applied to Agricultural Soils. False Alarm Regarding Possible Problems for Food Safety? (8 pp) Полный текст
2007
Laturnus, Frank | von Arnold, Karin | Grøn, Christian
GOAL, SCOPE AND BACKGROUND: Sewage sludge produced in wastewater treatment contains large amounts of organic matter and nutrients and could, therefore, be suitable as fertiliser. However, with the sludge, besides heavy metals and pathogenic bacteria, a variety of organic contaminants can be added to agricultural fields. Whether the organic contaminants from the sludge can have adverse effects on human health and wildlife if these compounds enter the food chain or groundwater still remains a point of controversial discussion. MAIN FEATURES: This paper presents an overview on the present situation in Europe and a summary of some recent results on the possible uptake of organic contaminants by crops after addition to agricultural fields by sewage sludge. RESULTS: Greenhouse experiments and field trials were performed to study the degradation and uptake of organic micro-contaminants in sludge-amended agricultural soil in crops, such as barley and carrots grown in agricultural soil amended with anaerobically-treated sewage sludge from a wastewater treatment plant, but studies hitherto have revealed no immediate risks. Common sludge contaminants such as linear alkylbenzene sulphonates (LAS), nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAH), bis(diethylhexyl) phthalate (DEHP), showed neither accumulation in soil nor uptake in plants. DISCUSSION: It is assumed that the annual amount of sewage sludge produced in Europe will increase in the future, mainly due to larger amounts of high quality drinking water needed by an increasing population and due to increasing demands for cleaner sewage water. Application of sewage sludge to agricultural soils is sustainable and economical due to nutrient cycling and disposal of sewage sludge. However, this solution also involves risks with respect to the occurrence of organic contaminants and other potentially harmful contents such as pathogens and heavy metals present in the sludge. There have been concerns that organic contaminants may accumulate in the soil, be taken up by plants and thereby transferred to humans via the food chain. Results obtained so far revealed, however, no immediate risk of accumulation of common organic sludge contaminants in soil or uptake in plants when applying sewage sludge to agricultural soil. With very high dosages of sewage sludge, there may be a risk for accumulation of very apolar contaminants, such as DEHP, to the soil. CONCLUSIONS: Any conclusions on the safe use of sewage sludge in agriculture have to be drawn carefully, as the studies performed until now have been limited. Further studies are required, and before final statements can be drawn, it is imminent to study a larger variety of common crops and the effect sewage sludge application may have on a possible accumulation of organic contaminants in the crops. Furthermore, a larger variety of organic contaminants need to be studied and special focus should be given to contaminants newly introduced into the environment. Besides investigating possible plant uptake of organic contaminants, the fate of these compounds in soil after sludge application need to be monitored too. Here, special attention has to be given to studies on degradation and the formation of degradation products, to weathering and to leaching effects on groundwater, to the application of different crops on the same field (crop rotation), to the use of full-width tillage and strip tillage, and to long term application of sewage sludge on the soil. RECOMMENDATIONS AND PERSPECTIVE: There are environmental, political as well as economical incentives to increase the agricultural application of sludge. However, such usage should be performed with care as there are also ways in which sludge fertilisation could harm the environment and human health. Recently, a new European COST Action (859) has been established covering the field of food safety and improved food quality. Part of the Action is dealing with the application of sewage sludge in agriculture. Before any political and economical measures can be taken, the pros and cons have to be sufficiently investigated on a scientific level first.
Показать больше [+] Меньше [-]Biosorption and Biovolatilization of Arsenic by Heat-Resistant Fungi (5 pp) Полный текст
2007
GOAL, SCOPE AND BACKGROUND: The aim of this work is to show the ability of several fungal species, isolated from arsenic polluted soils, to biosorb and volatilize arsenic from a liquid medium under laboratory conditions. Mechanisms of biosorption and biovolatilization play an important role in the biogeochemical cycle of arsenic in the environment. The quantification of production of volatile arsenicals is discussed in this article. METHODS: Heat-resistant filamentous fungi Neosartorya fischeri, Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum, originally isolated from sediments highly contaminated with arsenic (more than 1403 mg.l-1 of arsenic), and the non-heat-resistant fungus Aspergillus niger were cultivated in 40 mL liquid Sabouraud medium (SAB) enriched by 0.05, 0.25, 1.0 or 2.5 mg of inorganic arsenic (H3AsO4). After 30-day and 90-day cultivation under laboratory conditions, the total arsenic content was determined in mycelium and SAB medium using the HG AAS analytical method. Production of volatile arsenic derivates by the Neosartorya fischeri strain was also determined directly by hourly sorption using the sorbent Anasorb CSC (USA). RESULTS: Filamentous fungi volatilized 0.025–0.321 mg of arsenic from the cultivation system, on average, depending on arsenic concentrations and fungal species. The loss of arsenic was calculated indirectly by determining the sum of arsenic content in the mycelium and culture medium. The amount of arsenic captured on sorption material was 35.7 ng of arsenic (22nd day of cultivation) and 56.4 ng of arsenic (29th day of cultivation) after one hour's sorption. Biosorption of arsenic by two types of fungal biomass was also discussed, and the biosorption capacity for arsenic of pelletized and compact biomass of Neosartorya fischeri was on average 0.388 mg and 0.783 mg of arsenic, respectively. DISCUSSION: The biosorption and amount of volatilized arsenic for each fungal species was evaluated and the effect of initial pH on the biovolatilization of arsenic was discussed. CONCLUSIONS: The most effective biovolatilization of arsenic was observed in the heat-resistant Neosartorya fischeri strain, while biotransformation of arsenic into volatile derivates was approximately two times lower for the non-heat-resistant Aspergillus niger strain. Biovolatilization of arsenic by Talaromyces wortmannii, T. flavus, Eupenicillium cinnamopurpureum was negligible. Results from biosorption experiments indicate that nearly all of an uptaken arsenic by Neosartorya fischeri was transformed into volatile derivates. RECOMMENDATIONS AND PERSPECTIVE: Biovolatilization and biosorption have a great potential for bioremediation of contaminated localities. However, results showed that not all fungal species are effective in the removal of arsenic. Thus, more work in this research area is needed.
Показать больше [+] Меньше [-]Phytoextraction of lead-contaminated soil using vetivergrass (Vetiveria zizanioides L.), cogongrass (Imperata cylindrica L.) and carabaograss (Paspalum conjugatum L.) Полный текст
2007
Paz-Alberto, Annie Melinda | Sigua, Gilbert C. | Baui, Bellrose G. | Prudente, Jacqueline A.
BACKGROUND, AIMS AND SCOPE: The global problem concerning contamination of the environment as a consequence of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contributes to a variety of health effects such as decline in mental, cognitive and physical health of the individual. An alternative way of reducing Pb concentration from the soil is through phytoremediation. Phytoremediation is an alternative method that uses plants to clean up a contaminated area. The objectives of this study were: (1) to determine the survival rate and vegetative characteristics of three grass species such as vetivergrass, cogongrass and carabaograss grown in soils with different Pb levels; and (2) to determine and compare the ability of the three grass species as potential phytoremediators in terms of Pb accumulation by plants. METHODS: The three test plants: vetivergrass (Vetiveria zizanioides L.); cogongrass (Imperata cylindrica L.); and carabaograss (Paspalum conjugatum L.) were grown in individual plastic bags containing soils with 75 mg kg⁻¹ (37.5 kg ha⁻¹) and 150 mg kg⁻¹ (75 kg ha⁻¹) of Pb, respectively. The Pb contents of the test plants and the soil were analyzed before and after experimental treatments using an atomic absorption spectrophotometer. This study was laid out following a 3 × 2 factorial experiment in a completely randomized design. RESULTS: On the vegetative characteristics of the test plants, vetivergrass registered the highest whole plant dry matter weight (33.85–39.39 Mg ha⁻¹). Carabaograss had the lowest herbage mass production of 4.12 Mg ha⁻¹ and 5.72 Mg ha⁻¹ from soils added with 75 and 150 mg Pb kg⁻¹, respectively. Vetivergrass also had the highest percent plant survival which meant it best tolerated the Pb contamination in soils. Vetivergrass registered the highest rate of Pb absorption (10.16 ± 2.81 mg kg⁻¹). This was followed by cogongrass (2.34 ± 0.52 mg kg⁻¹) and carabaograss with a mean Pb level of 0.49 ± 0.56 mg kg⁻¹. Levels of Pb among the three grasses (shoots + roots) did not vary significantly with the amount of Pb added (75 and 150 mg kg⁻¹) to the soil. DISCUSSION: Vetivergrass yielded the highest biomass; it also has the greatest amount of Pb absorbed (roots + shoots). This can be attributed to the highly extensive root system of vetivergrass with the presence of an enormous amount of root hairs. Extensive root system denotes more contact to nutrients in soils, therefore more likelihood of nutrient absorption and Pb uptake. The efficiency of plants as phytoremediators could be correlated with the plants’ total biomass. This implies that the higher the biomass, the greater the Pb uptake. Plants characteristically exhibit remarkable capacity to absorb what they need and exclude what they do not need. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roots or a restricted transport of the metals from root to shoots. Combination of high metal accumulation and high biomass production results in the most metal removal from the soil. CONCLUSIONS: The present study indicated that vetivergrass possessed many beneficial characteristics to uptake Pb from contaminated soil. It was the most tolerant and could grow in soil contaminated with high Pb concentration. Cogongrass and carabaograss are also potential phytoremediators since they can absorb small amount of Pb in soils, although cogongrass is more tolerant to Pb-contaminated soil compared with carabaograss. The important implication of our findings is that vetivergrass can be used for phytoextraction on sites contaminated with high levels of heavy metals; particularly Pb. RECOMMENDATIONS AND PERSPECTIVES: High levels of Pb in localized areas are still a concern especially in urban areas with high levels of traffic, near Pb smelters, battery plants, or industrial facilities that burn fuel ending up in water and soils. The grasses used in the study, and particularly vetivergrass, can be used to phytoremediate urban soil with various contaminations by planting these grasses in lawns and public parks.
Показать больше [+] Меньше [-]Japanese Whaling and Other Cetacean Fisheries (10 pp) Полный текст
2007
BACKGROUND, AIM AND SCOPE: Discussions on management of whales and whaling are factually monopolized by the International Whaling Commission (IWC), resulting in a limitation of information flow to outside communities. With an aim to improve the situation, this article briefly reviews whaling and dolphin/porpoise fisheries in Japan, which is recognized to be the world largest cetacean exploitation.MAIN FEATURES: The Japanese government grants an annual take of 22,647 cetaceans of 15 species for scientific whaling and various kinds of active dolphin/porpoise fisheries by the nationals. Further, over 100 baleen whales and numerous small cetaceans are taken in passive net fisheries. They are used mostly for human consumption and some for aquarium display.Results. Sustainability of the take is not evident and some populations have shown a historical decline. The Japanese program of scientific whaling has been reviewed by IWC and its Scientific Committee (SC), although they have arrived at no consensus. DISCUSSION: The current scientific whaling program invites arguments from the view points of science as well as concerning the ethics of scientists, economy, and interpretation of the International Convention for Regulation of Whaling (ICRW) of 1946. The scientific whaling and other Japanese cetacean fisheries are benefited from nationalistic public attitude, and ambiguity and weakness of the ICRW. CONCLUSIONS: Japanese cetacean harvest will continue supported by domestic demand for whale products as long as the proceeds can sustain the operation, even with criticisms from outside communities. RECOMMENDATIONS AND PERSPECTIVE: . For safe management of small cetaceans exploited by Japan, studies are urgent on the population structure, abundance and validity of catch statistics. The results should be open to scientific communities.
Показать больше [+] Меньше [-]ESPR subject area 5 ‘Environmental Microbiology, (Bio)Technologies, Health Issues’ Полный текст
2007
Cao, Ling | Wang, Weimin | Yang, Yi | Yang, Chengtai | Yuan, Zonghui | Xiong, Shanbo | Diana, James
GOAL, SCOPE AND BACKGROUND: Aquaculture activities are well known to be the major contributor to the increasing level of organic waste and toxic compounds in the aquaculture industry. Along with the development of intensive aquaculture in China, concerns are evoked about the possible effects of everincreasing aquaculture waste both on productivity inside the aquaculture system and on the ambient aquatic ecosystem. Therefore, it is apparent that appropriate waste treatment processes are needed for sustaining aquaculture development. This review aims at identifying the current status of aquaculture and aquaculture waste production in China. MAIN FEATURES: China is the world’s largest fishery nation in terms of total seafood production volume, a position it has maintained continuously since 1990. Freshwater aquaculture is a major part of the Chinese fishery industry. Marine aquaculture in China consists of both land-based and offshore aquaculture, with the latter mostly operated in shallow seas, mud flats and protected bays. The environmental impacts of aquaculture are also striking. RESULTS: Case studies on pollution hot spots caused by aquaculture have been introduced. The quality and quantity of waste from aquaculture depends mainly on culture system characteristics and the choice of species, but also on feed quality and management. Wastewater without treatment, if continuously discharged into the aquatic environment, could result in remarkable elevation of the total organic matter contents and cause considerable economy lost. Waste treatments can be mainly classified into three categories: physical, chemical and biological methods. DISCUSSION: The environmental impacts of different aquaculture species are not the same. New waste treatments are introduced as references for the potential development of the waste treatment system in China. The most appropriate waste treatment system for each site should be selected according to the sites’ conditions and financial status as well as by weighing the advantages and disadvantages of each system. Strategies and perspectives for sustainable aquaculture development are proposed, with the emphasis on environmental protection. CONCLUSIONS: Negative effects of waste from aquaculture to aquatic environment are increasingly recognized, though they were just a small proportion to land-based pollutants. Properly planned use of aquaculture waste alleviates water pollution problems and not only conserves valuable water resources but also takes advantage of the nutrients contained in effluent. It is highly demanding to develop sustainable aquaculture which keeps stocking density and pollution loadings under environmental capacity. RECOMMENDATIONS AND PERSPECTIVES: The traditional procedures for aquaculture waste treatment, mainly based on physical and chemical means, should be overcome by more site-specific approaches, taking into account the characteristics and resistibility of the aquatic environment. Further research needs to improve or optimize the current methods of wastewater treatment and reuse. Proposed new treatment technology should evaluate their feasibility at a larger scale for practical application.
Показать больше [+] Меньше [-]Fractionation and Determination of Ah Receptor (AhR) Agonists in Organic Waste After Anaerobic Biodegradation and in Batch Experiments with PCB and decaBDE (8 pp) Полный текст
2007
Olsman, Helena | Schnürer, Anna | Björnfoth, Helén | van Bavel, Bert | Engwall, Magnus
GOALS, SCOPE AND BACKGROUND: Anaerobic digestion of organic household waste can lead to an increase in dioxin-like content, as determined by dioxin-specific bioassays. This may be a result of bioactivation of Ah receptor (AhR) agonists into more potent congeners. Work towards identifying the contributing compound groups is important in order to understand the mechanisms and to assess the relevance behind this increase in dioxin-like toxicity, since the residue can be used as a soil fertilising agent. The aim with the present work was to identify compound groups with AhR agonistic properties that caused the previously reported increase in dioxin-like activity after anaerobic biodegradation METHODS: Firstly, chemical fractionation combined with dioxin bioassay testing was used to find bioactive classes of compounds. Secondly, batch digestion experiments with an externally added polychlorinated biphenyl (PCB) mixture (Clophen A50) and with decabrominated diphenyl ether (decaBDE), respectively, were studied as a possible process for transformation of precursors into more potent, dioxin-like compounds. Mesophilic (37ºC) and thermophilic (55ºC) anaerobic digestion were studied. Two different dioxin-specific bioassays were used to analyse AhR agonists in the biodegraded material, the CELCAD and the DR-CALUX. RESULTS AND DISCUSSION: AhR agonist activity was detected in both di- and polyaromatic fractions of digestate extracts, which indicated that a diverse mixture of compounds contributed to the bioassay responses. No quantifiable activities were induced by the monoaromatic fractions. Further fractionation based on planarity revealed higher concentrations of AhR agonists than what was detected after the first fractionation, probably due to non-additive biological interactions of compounds in the extract that were removed in the second fractionation. These results showed significant activity in the non-planar diaromatic fractions and in the co-planar fractions of both diaromates and polyaromates. In the batch experiment with externally added PCB, an increase in dioxin-like activity was seen after 21 days of digestion at mesophilic conditions. After completed digestion, the content of AhR agonists was equal to the start concentration. PCB analysis with GC-MS indicated that dehalogenation of PCBs occurred in the digestors. The batch experiment with decaBDE showed no significant changes in TEQ-concentrations over time. CONCLUSIONS: The results show that the previously reported increase of AhR agonists during mesophilic anaerobic digestion is probably due to an accumulation of several different groups of AhR agonists, both diaromatic and polyaromatic, and both co-planar and non-planar. Batch experiments with externally added PCBs and decaBDE, respectively, did not result in any accumulation of AhR agonist activity after completed digestion, even though chemical analysis indicate a dechlorination of PCBs. Complex, unfractionated extracts were difficult to test using the bioassay approach. Removal of AhR antagonists or otherwise interacting compounds during fractionation may yield bio-TEQ values that are much higher than in the original extract. RECOMMENDATIONS AND PERSPECTIVE: Our results indicate that the environmental risk that AhR agonists may pose concerning large-scale anaerobic digestion of organic household waste probably depends on the efficiency of the digester and the sludge residence time. In order to obtain reliable results with the bioassays, an extensive cleanup and fractionation procedure is necessary. Without clean up and fractionation, there is a risk for false negatives and misleading conclusions. DR-CALUX and CELCAD were both suitable for these kinds of studies, provided that suitable fractionation methods are used.
Показать больше [+] Меньше [-]