Уточнить поиск
Результаты 381-390 из 4,298
Alkali–earth metal bridges formed in biofilm matrices regulate the uptake of fluoroquinolone antibiotics and protect against bacterial apoptosis
2017
Kang, Fuxing | Wang, Qian | Shou, Weijun | Collins, Chris D. | Gao, Yanzheng
Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic (FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by which freely accessed alkali–earth metals in natural waters affect the cellular uptake of FQAs at the water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca²⁺ or Mg²⁺) bridge between modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs towards cells (135-nm-thick biofilm). As the addition of Ca²⁺ and Mg²⁺ (0–3.5 mmol/L, CIP: 1.25 μmol/L), the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially antibiotic resistance.
Показать больше [+] Меньше [-]Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in southeast China
2017
Gao, Yan | Wang, Chengcheng | Zhang, Weiguo | Di, Panpan | Yi, Neng | Chen, Chengrong
Bacterial communities in rivers receiving untreated domestic wastewater may show specific spatial assemblage patterns due to a wide range of physicochemical conditions created by periodic algal bloom. However, there are significant gaps in understanding environmental forces that drive changes in microbial assemblages in polluted rivers. In this study, we applied high-throughput sequencing of 16S rRNA gene amplicons to perform comprehensive spatio-temporal profiling of bacterial community structure in a local river segment receiving domestic wastewater discharge in southeast China. Multivariate statistics were then used to analyse links between bacterial community structure and environmental factors. Non-metric multidimensional scaling (NMDS) plots showed that the bacterial community structure was different between upstream and downstream sections of the river. While the upstream water contained a high proportion of bacteria degrading xenobiotic aromatic compounds, the downstream water experiencing stronger algal bloom had a more diverse bacterial community which included the genus Aeromonas comprising 14 species, most of which are human pathogens. Least discriminant analysis (LDA) effect size revealed that the surface water was mainly inhabited by aerobic microorganisms capable of degrading aromatic compounds, and also contained bacterial genera including pathogenic species. In contrast, in the bottom water we found, along with aromatic compound-degrading species, anaerobic denitrifiers and Fe3+-reducing and fermentative bacteria. Variance partitioning canonical correspondence analysis (VPA) showed that nutrient ratios had a stronger contribution to bacterial dissimilarities than other major physicochemical factors (temperature, pH, dissolved oxygen, total organic carbon, and chlorophyll a). These results show that microbial communities in rivers continuously receiving domestic wastewater have specific longitudinal and vertical assemblage patterns and may contain pathogenic species presenting a high threat to public health. These factors should be taken into consideration while developing pollution management strategies.
Показать больше [+] Меньше [-]Biotransformation in the zebrafish embryo –temporal gene transcription changes of cytochrome P450 enzymes and internal exposure dynamics of the AhR binding xenobiotic benz[a]anthracene
2017
Kühnert, Agnes | Vogs, Carolina | Seiwert, Bettina | Aulhorn, Silke | Altenburger, R. | Hollert, Henner | Küster, Eberhard | Busch, Wibke
Not much is known about the biotransformation capability of zebrafish (Danio rerio) embryos. For understanding possible toxicity differences to adult fish, it might be crucial to understand the biotransformation of chemicals in zebrafish embryos i.e. as part of toxicokinetics.The biotransformation capabilities were analysed for two different stages of zebrafish embryos in conjunction with the internal concentrations of a xenobiotic. Zebrafish embryos of the late cleavage/early blastula period (2–26 hpf) and the early pharyngula period (26–50 hpf) were exposed for 24 h to the AhR binding compound benz[a]anthracene (BaA). Time dependent changes in cyp transcription (cyp1a, cyp1b1, cyp1c1 and cyp1c2) as well as concentration & time-dependent courses of BaA in the fish embryo and the exposure medium were analysed. Additionally, the CYP mediated formation of biotransformation products was investigated.We found correlations between transcriptional responses and the internal concentration for both exposure types. These correlations were depending on the start of the exposure i.e. the age of the exposed embryo. While no significant induction of the examined gene transcripts was observed in the first 12 h of exposure beginning in the blastula period a correlation was apparent when exposure started later i.e. in the pharyngula period. A significant induction of cyp1a was detected already after 1.5 h of BaA exposure. Gene transcripts for cyp1b1, cyp1c1 and cyp1c2 showed expressions distinctly different from cyp1a and were, in general, less inducible by BaA in both exposure windows. The toxicokinetic analysis showed that the biotransformation capability was fivefold higher in the older fish embryos. Biotransformation products of phase I reactions were found between 32 hpf and 50 hpf and were tentatively identified as benz[a]anthracene-phenol and benz[a]anthracene-dihydrodiol-epoxide.In conclusion, not only duration but also onset of exposure in relation to the developmental stage of zebrafish embryos is important in the analysis and interpretation of effects due to different biotransformation capabilities.
Показать больше [+] Меньше [-]Exposure of larvae to thiamethoxam affects the survival and physiology of the honey bee at post-embryonic stages
2017
Tavares, Daiana Antonia | Dussaubat, Claudia | Kretzschmar, André | Carvalho, Stephan Malfitano | Silva-Zacarin, Elaine C.M. | Malaspina, Osmar | Bérail, Géraldine | Brunet, Jean-Luc | Belzunces, L. P. (Luc P.)
Under laboratory conditions, the effects of thiamethoxam were investigated in larvae, pupae and emerging honey bees after exposure at larval stages with different concentrations in the food (0.00001 ng/μL, 0.001 ng/μL and 1.44 ng/μL). Thiamethoxam reduced the survival of larvae and pupae and consequently decreased the percentage of emerging honey bees. Thiamethoxam induced important physiological disturbances. It increased acetylcholinesterase (AChE) activity at all developmental stages and increased glutathione-S-transferase (GST) and carboxylesterase para (CaEp) activities at the pupal stages. For midgut alkaline phosphatase (ALP), no activity was detected in pupae stages, and no effect was observed in larvae and emerging bees. We assume that the effects of thiamethoxam on the survival, emergence and physiology of honey bees may affect the development of the colony. These results showed that attention should be paid to the exposure to pesticides during the developmental stages of the honey bee. This study represents the first investigation of the effects of thiamethoxam on the development of A. mellifera following larval exposure.
Показать больше [+] Меньше [-]Baseline tissue concentrations of metal in aquatic oligochaetes: Field and laboratory approaches
2017
Méndez-Fernández, Leire | Martinez-Madrid, Maite | Pardo, Isabel | Rodríguez, Pilar
Metal tissue residue evaluation in benthic macroinvertebrates is an important component of an integrated approach to ecological risk assessment of metals and metalloids in the Nalón River basin (North Spain), where historic mining activities took place. The purpose of this study was to know the baseline tissue concentration of 7 metals (Cd, Cu, Cr, Hg, Ni, Pb, and Zn) and one metalloid (As) in aquatic oligochaetes, sediment burrower organisms, representative of the collector-gatherer functional feeding group in the macroinvertebrate community. Metal concentration was measured in sediment and field aquatic oligochaetes at several reference (minimally disturbed) sites of the Nalón River basin, selected following Water Framework Directive criteria. Metal tissue residues were measured separately in field microdriles and lumbricids and compared with tissue concentrations measured in the aquatic oligochaete Tubifex tubifex exposed to reference sediments from the Nalón and other Cantabrian River basins in 28-d chronic laboratory bioassays. Metal tissue residues in bioassay organisms attained usually higher levels than in field worms, in special for As, Cu, Hg and Zn, although metal levels were within the same order of magnitude. The baseline values for metals were calculated from 90th percentile (P90) values in field aquatic oligochaetes (microdriles and lumbricids). The P90 for Hg, As and Zn could efficiently discriminate Toxic and Non-Toxic sites, while baseline values calculated for the other metals deserve further research due either to the low range of values found in the present study, or to the regulation of the metal body concentration, as in the case of Cu.
Показать больше [+] Меньше [-]Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China
2017
Ma, Yuxia | Zhao, Yuxin | Yang, Sixu | Zhou, Jianding | Xin, Jinyuan | Wang, Shigong | Yang, Dandan
Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO2, NO2 and PM10) had lag effects of 0–2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m3 increase in PM10, SO2 and NO2 were 1.008 (0.997–1.020), 1.008(0.999–1.018) and 1.014(1.003–1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2.
Показать больше [+] Меньше [-]Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants
2017
Sun, Lijuan | Yang, Jianjun | Fang, Huaxiang | Xu, Chen | Peng, Cheng | Huang, Haomin | Lu, Lingli | Duan, Dechao | Zhang, Xiangzhi | Shi, Jiyan
Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S0, Na2SO4) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain.
Показать больше [+] Меньше [-]Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure
2017
Wang, Jing-Xin | Bao, Lian-Jun | Luo, Pei | Shi, Lei | Wong, Charles S. | Zeng, E. Y. (Eddy Y.)
Diet is considered as the most important human exposure pathway for polybrominated diphenyl ethers (PBDEs). Metabolism and accumulation patterns of PBDEs in different growth periods of chickens are helpful for evaluating human dietary exposure, but such information is scarce. In this study, female chickens were fed with food spiked with BDE-209 at 85 mg kg⁻¹, and the intake, accumulation, and excretion of BDE-209 and its main metabolites in various tissues were examined. Concentrations of BDE-209 in chicken tissues increased over time in a tissue-specific manner; they were the greatest in liver and generally the lowest in breast meat during the entire exposure period. The kinetic patterns were dependent on both growth-dilution effects and accumulated concentrations of BDE-209. Tissue concentrations of ∑8PBDE (sum of BDE-28, 47, 99, 100, 153, 154, 183, and 209) followed the sequence of liver > blood > skin > intestine > stomach > leg meat > breast meat. Different tissue partition coefficients and perfusion rates for blood may have resulted in different PBDE concentrations in tissues. The absorption efficiency of BDE-209 in chicken tissues followed the sequence of liver (0.15 ± 0.032%) > skin (0.14 ± 0.038%) > intestine (0.071 ± 0.021%) > breast meat (0.062 ± 0.020%) > leg meat (0.059 ± 0.016%) > stomach (0.021 ± 0.0095%), likely due in part to facilitated absorption of BDE-209 by transport proteins (P-glycoproteins). On average, 9.3 ± 1.7% of BDE-209 was excreted in feces. Estimated human average dietary intake via the consumption of chicken tissues of ∑8PBDE for adults and children was 319 and 1380 ng day⁻¹ for liver, 211 and 632 ng day⁻¹ for leg meat, and 104 and 311 ng day⁻¹ for breast meat from the contaminated group. Liver clearly poses the highest exposure risk for human consumption, particularly if chickens are fed with contaminated feed.
Показать больше [+] Меньше [-]Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison
2017
Feng, Daolun | Liu, Ying | Gao, Yi | Zhou, Jinxing | Zheng, Lirong | Qiao, Gang | Ma, Liming | Lin, Zhifen | Grathwohl, Peter
Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m−2 day−1, with a geometric mean of 2600 ng m−2 day−1. The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km−2) with a range of 2.5–10 tons (0.4–1.6 kg km−2).
Показать больше [+] Меньше [-]Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model
2017
Chen, Wen-Qian | Wang, Wen-Xiong | Tan, Qiao-Guo
The effects of salinity on metal toxicity are complex: not only affecting metal bioaccumulation, but also altering the physiology and sensitivity of organisms. In this study, we used a toxicokinetic-toxicodynamic (TK-TD) model to separate and quantify the dual effects of salinity on copper (Cu) toxicity in a euryhaline clam Potamocorbula laevis. The toxicokinetics of Cu was determined using the stable isotope 65Cu as a tracer at concentrations (10–500 μg L−1) realistic to contaminated environments and at salinities ranging from 5 to 30. At low Cu concentrations (ca. 10 μg L−1), Cu bioaccumulation decreased monotonically with salinity, and the uptake rate constant (ku, 0.546 L g−1 h−1 to 0.213 L g−1 h−1) fitted well with an empirical equation, ku = 1/(1.35 + 0.116·Salinity), by treating salinity as a pseudo-competitor. The median lethal concentrations (LC50s) of Cu were 269, 224, and 192 μg L−1 at salinity 5, 15, and 30, respectively. At high Cu concentrations (ca. 500 μg L−1), elevating salinity were much less effective in decreasing Cu bioaccumulation; whereas Cu toxicity increased with salinity. The increased toxicity could be explained by the increases in Cu killing rates (kks), which were estimated to be 0.44–2.08 mg μg−1 h−1 and were presumably due to the osmotic stress caused by the deviation from the optimal salinity of the clams. The other toxicodynamic parameter, internal threshold concentration (CIT), ranged from 79 to 133 μg−1 g−1 and showed no clear trend with salinity.
Показать больше [+] Меньше [-]