Уточнить поиск
Результаты 381-390 из 4,368
Probing the relationship between external and internal human exposure of organophosphate flame retardants using pharmacokinetic modelling Полный текст
2017
Bui, Thuy T. | Xu, Fuchao | Van den Eede, Nele | Cousins, Anna Palm | Covaci, Adrian | Cousins, Ian T.
Human external exposure (i.e. intake) of organophosphate flame retardants (PFRs) has recently been quantified, but no link has yet been established between external and internal exposure. In this study, we used a pharmacokinetic (PK) model to probe the relationship between external and internal exposure data for three PFRs (EHDPHP, TNBP and TPHP) available for a Norwegian cohort of 61 individuals from 61 different households. Using current literature on metabolism of PFRs, we predicted the metabolite serum/urine concentrations and compared it to measured data from the study population. Unavailable parameters were estimated using a model fitting approach (least squares method) after assigning reasonable constraints on the ranges of fitted parameters. Results showed an acceptable comparison between PK model estimates and measurements (<10-fold deviation) for EHDPHP. However, a deviation of 10–1000 was observed between PK model estimates and measurements for TNBP and TPHP. Sensitivity and uncertainty analysis on the PK model revealed that EHDPHP results showed higher uncertainty than TNBP or TPHP. However, there are indications that (1) current biomarkers of exposure (i.e. assumed metabolites) for TNBP and TPHP chemicals might not be specific and ultimately affecting the outcome of the modeling and (2) some exposure pathways might be missing. Further research, such as in vivo laboratory metabolism experiments of PFRs including identification of better biomarkers will reduce uncertainties in human exposure assessment.
Показать больше [+] Меньше [-]Ecological assessment of an algaecidal naphthoquinone derivate for the mitigation of Stephanodiscus within a mesocosm Полный текст
2017
Joo, Jae-Hyoung | Kuang, Zhen | Wang, Pengbin | Park, Bum Soo | Patidar, Shailesh Kumar | Han, Myung-Soo
The novel eco-friendly algaecidal naphthoquinone derivate was used to control harmful algal bloom causing species Stephanodiscus and, its effect was assessed on other undesired and non-targeted microbial communities. We conducted a mesocosm experiment to investigate the effects of this novel algaecide on native microbial communities rearing in water collected from Nakdonggang River. Upon treatment of the mesocosm with the naphthoquinone derivate the concentration of Chl-a decreased from 20.4 μg L−1 to 9.5 μg L−1 after 2 days. The turbidity has also shown decrement (exhibited 15.5 NTU on the 7th day). The concentrations of DOC and phosphate in the treatment were slightly higher than those in the control due to the decomposition of dead Stephanodiscus, whereas the DO and pH in the treated condition were slightly lower than those in the control; which was due to increment of organic acids and higher degradation activity. Results showed that bacterial abundance were not significantly different but community composition were slightly different as revealed by NGS (Next generation sequencing). The variation in HNF (Heterotrophic nanoflagellates) revealed that the bacterial community composition changed following the change in bacterial abundance. During the treatment, the abundance of Stephanodiscus was significantly reduced by more than 80% after 6 days, and the abundance of ciliates and the dominant species, Halteria grandinella, had shown marked decline. The abundance of zooplankton sharply decreased to 5 ind. L−1on the 8th day but increased again by the end of the study period. The Shannon-Wiener diversity index of phytoplankton, ciliates and zooplankton in the treated mesocosm increased significantly after 4, 7 and 8 days, respectively. The marked changes in the ecosystem structure were observed in treatment compare to control. However, the beneficial microalgal populations were not affected which indicated possibility of restoration of treated ecosystem and regain of healthy community structure after certain period.
Показать больше [+] Меньше [-]Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida Полный текст
2017
Bednarska, Agnieszka J. | Choczyński, Maciej | Laskowski, Ryszard | Walczak, Marcin
In polluted environments organisms are commonly exposed to a combination of chemicals with different modes of action, and their effects can be additionally modified by natural abiotic conditions. One possible mechanism for interactions in mixtures is via toxicokinetics, as chemicals may alter the uptake, distribution, biotransformation and/or elimination of each other, and all these processes can be affected by temperature. In this study, the effect of temperature (T) on the toxicokinetics of copper (Cu) and chlorpyriphos (CHP), applied either singly or in binary mixtures, was studied in the earthworm Eisenia fetida. The experiments were conducted at 10 or 20 °C and the earthworms were exposed to environmentally realistic concentrations of Cu and/or CHP for 16 d, followed by a depuration period of 4 d in uncontaminated soil. The earthworms were sampled for body Cu and/or CHP concentrations and acetylcholinesterase (AChE) activity measurements. The CHP degradation rate in the soil was substantially higher at 20 °C and in soil treated with Cu. The significant (p < 0.05) inhibition of AChE activity in the earthworms exposed to CHP was found. The effect of Cu was significant only at p < 0.1. No synergistic effect of the parallel CHP and Cu exposure was found. Four days after transferring the earthworms to uncontaminated soil, the AChE activity recovered to the level observed in control animals. The temperature effect on the toxicokinetic parameters was more pronounced for CHP than for Cu. In the case of CHP, the assimilation rate constant (kA) was significantly higher at 20 °C than at 10 °C, both in CHP-only and CHP + Cu treatments. A similar trend was found for the elimination rate constant (kE), but the difference was statistically significant only for non-Cu treatments. In the case of Cu, the general trend of higher kA and kE at 20 °C and in the absence of CHP was observed.
Показать больше [+] Меньше [-]Photobleaching alters the photochemical and biological reactivity of humic acid towards 17α-ethynylestradiol Полный текст
2017
Ren, Dong | Huang, Bin | Yang, Benqin | Chen, Fang | Pan, Xuejun | Dionysiou, Dionysios D.
Dissolved humic acid (HA) is ubiquitous in natural waters. Its presence significantly changes the photo-and bio-degradation of some organic pollutants in natural waters. The effects of photobleaching on the composition, photosensitizing property and bioavailability of HA were investigated here along with the subsequent influence on its photochemical and biological reactivity in mediating 17α-ethynylestradiol (EE2) degradation. Photobleaching transformed the refractory HA into some small molecules, including organic acids and aliphatics. Along with composition alteration, the photochemical reactivity of HA towards EE2 was slightly depressed, with 9% of the removal rate inhibited by a 70-h photobleaching. Contrarily, the reactivity of HA in mediating EE2 biodegradation by E. coli was significantly promoted by a short-term photobleaching. Compared to the biodegradation of EE2 in the pristine HA, the 10-h photobleached HA increased the biodegradation removal rate of EE2 by 25%, reaching its peak value of about 60%. However, the EE2 biodegradation was inhibited by further irradiation, and the removal rate of EE2 decreased to that in the pristine HA systems. Because no substrate competition was found between EE2 and formate or glucose, EE2 biodegradation mediated by HA in natural waters may not be affected by coexistent organics. Photodegradation and biodegradation of EE2 mediated by HA thus can be combined together by photobleaching to remove pollutants from natural waters. The results reported here could assist environmental risk assessment with respect to EE2 in natural aquatic systems.
Показать больше [+] Меньше [-]Characterization of particulate-phase polycyclic aromatic hydrocarbons emitted from incense burning and their bioreactivity in RAW264.7 macrophage Полный текст
2017
Yang, Tzu-Ting | Ho, Su Chen | Chuang, Lu-Te | Chuang, Hsiao-Chi | Li, Ya-Ting | Wu, Jyun-Jie
This study investigated the effects of particle-bound polycyclic aromatic hydrocarbons (PAHs) produced from burning three incense types on and their bioreactivity in the RAW 264.7 murine macrophage cell line. Gas chromatography/mass spectrometry was used to determine the levels of 16 identified PAHs. Macrophages were exposed to incense particle extracts at concentrations of 0, 3.125, 6.25, 12.5, 25, 50, and 100 μg/mL for 24 h. After exposure, cell viability and nitric oxide (NO) and inflammatory mediator [tumor necrosis factor (TNF)-α] production of the cells were examined. The mean atomic hydrogen (H) to carbon (C) ratios in the environmentally friendly, binchotan charcoal, and lao shan incenses were 0.69, 1.13, and 1.71, respectively. PAH and total toxic equivalent (TEQ) mass fraction in the incenses ranged from 137.84 to 231.00 and 6.73–26.30 pg/μg, respectively. The exposure of RAW 264.7 macrophages to incense particles significantly increased TNF-α and NO production and reduced cell viability. The cells treated with particles collected from smoldering the environmentally friendly incense produced more NO and TNF-α compared to other incenses. Additionally, the TEQ of fluoranthene (FL), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (INP), dibenz[a,h]anthracene (DBA), and benzo[g,h,i]perylene [B(ghi)P] had a significant correlation (R2 = 0.64–0.98, P < 0.05) with NO and TNF-α production. The current findings indicate that incense particle-bound PAHs are biologically active and that burning an incense with a lower H/C ratio caused higher bioreactivity. The stimulatory effect of PAH-containing particles on molecular mechanisms of inflammation are critical for future study.
Показать больше [+] Меньше [-]The chronic effects of fullereneC60-associated sediments in the midge Chironomus riparius – Responses in first and second generations Полный текст
2017
Waissi, G.C. | Väänänen, K. | Nybom, I. | Pakarinen, K. | Akkanen, J. | Leppänen, M.T. | Kukkonen, J.V.K.
The life cycle parameters of the benthic invertebrate Chironomus riparius make it a relevant organism for use in multi-generation chronic ecotoxicology tests. Since studies on chronic exposures with fullerene carbon nanoparticles have revealed adverse effects at lower concentration ranges, it is crucial to gain understanding of the consequences in following generations. The aims of this study were to investigate whether sediment-associated fullereneC60 impacts on C. riparius emergence and breeding, thus affecting the growth of the second generation. Larvae were exposed to fullerene-spiked sediment at concentrations of 0.5, 10 and 40 mg/kg sediment dw. Total emergence and breeding success were monitored after the first generation and the newly hatched larvae from the first generation exposure were transferred either to continuous exposure or to pristine sediments without fullerene. Findings indicate that the presence of fullerenes have major impacts on the first generation, mainly shown as delayed emergence time of females. Increased larval growth was observed in the second generation, and we conclude that the C. riparius response to fullerene exposure indicated significant signs of recovery in second-generation larval growth. The result shows the effects to be important for population dynamics, revealing delayed female emergence time, which leads to situation where adults’ breeding is inhibited.
Показать больше [+] Меньше [-]Kinetic analysis of aerobic biotransformation pathways of a perfluorooctane sulfonate (PFOS) precursor in distinctly different soils Полный текст
2017
Zhang, Lilan | Lee, Linda S. | Niu, Junfeng | Liu, Jinxia
With the phaseout of perfluorooctane sulfonate (PFOS) production in most countries and its well known recalcitrance, there is a need to quantify the potential release of PFOS from precursors previously or currently being emitted into the environment. Aerobic biodegradation of N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was monitored in two soils from Indiana, USA: an acidic forest silt loam (FRST-48, pH = 5.5) and a high pH agricultural loam (PSF-49, pH = 7.8) with similar organic carbon contents (2.4 and 2.6%) for 210 d and 180 d, respectively. At designated times, triplicate samples were sacrificed for which headspace samples were taken followed by three sequential extractions. Extracts were analyzed using HPLC-tandem mass spectrometry. Measured profiles of EtFOSE degradation and generation/degradation of subsequent metabolites were fitted to the Indiana soils data as well as to a previously published data set for a Canadian soil using an R-based model (KinGUII) to explore pathways and estimate half-lives (t1/2) for EtFOSE and metabolites. EtFOSE degradation ranged from a few days to up to a month. PFOS yields ranged form 1.06–5.49 mol% with the alkaline soils being four to five times higher than the acidic soil. In addition, a direct pathway to PFOS had to be invoked to describe the early generation of PFOS in the Canadian soil. Of all metabolites, the sulfonamidoacetic acids were the most persistent (t1/2 ≥ 3 months) in all soils. We hypothesized that while pH-pKa dependent speciation may have impacted rates, differences in microbial communities between the 3 soils arising from varied soil properties including pH, nutrient levels, soil management, and climatic regions are likely the major factors affecting pathways, rates, and PFOS yields.
Показать больше [+] Меньше [-]A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline Полный текст
2017
Fu, Dun | Chen, Zheng | Xia, Dong | Shen, Liang | Wang, Yuanpeng | Li, Qingbiao
Solid digestate, a by-product of anaerobic digestion systems, has led to a range of environmental issues. In the present study, a novel composite based on a solid digestate-biochar-Cu NP composite was synthesized for tetracycline removal from an aqueous medium. The removal efficiency values for tetracycline (200 mg L⁻¹) were 31.5% and 97.8%, respectively, by the biochar-Cu NP composite (0.5 g L⁻¹) in the absence and presence of hydrogen peroxide (H2O2, 20 mM) within 6 h of reaction time. The possible degradation pathway of tetracycline was investigated using liquid chromatography-mass spectrometry. The desorption experiment results suggested that no significant concentration of tetracycline was detected on the composite after the reaction, but a small amount of intermediates in terms of total organic carbon (TOC) accounting for 3.1%, and 23.3% of the end-product NH4⁺ was adsorbed onto the biochar sheets. The dispersive Cu NPs on the biochar resulted in an increase in the surface area and pore volume of the biochar-Cu NP composite, which enhanced tetracycline adsorption as well as the degradation efficiency. Relative tetracycline removal mechanisms were dominantly ascribed to ·OH generation from the Cu(II)/Cu(I) redox reaction with H2O2 and the electron-transfer process of free radicals (FRs) in biochar. The proposed approach serves dual purposes of waste digestate reuse and treatment of antibiotic pollutants.This study highlights the activation of H2O2 by the dispersive Cu NPs coupling with biochar derived from a waste solid digestate for tetracycline treatment.
Показать больше [+] Меньше [-]Oyster-based national mapping of trace metals pollution in the Chinese coastal waters Полный текст
2017
Lu, Guang-Yuan | Ke, Cai-Huan | Zhu, Aijia | Wang, Wen-Xiong
To investigate the distribution and variability of trace metal pollution in the Chinese coastal waters, over 1000 adult oyster individuals were collected from 31 sites along the entire coastline, spanning from temperate to tropical regions (Bohai Sea, Yellow Sea, East China Sea and South China Sea), between August and September 2015. Concentrations of macroelements [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] and trace elements [cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), chromium (Cr), silver (Ag), and titanium (Ti)] in these oysters were concurrently measured and analyzed. The results showed high Ti, Zn and Cu bioaccumulation in oysters from Guangdong (South China Sea) and Zhejiang (East China Sea). Oysters at Nanji Island (Wenzhou) and Daya Bay (Huizhou) accumulated significantly high concentrations of Ni and Cr. The elements in these oysters were several times higher than the national food safety limits of China. On the other hand, the present study found that normalization of metals by salinity (Na) and nutrient (P) could reflect more details of metal pollution in the oysters. Biomonitoring of metal pollution could benefit from incorporating the macroelement calibration instead of focusing only on the total metal concentrations. Overall, simultaneous measurement of macroelements and trace metals coupled with non-linear analysis provide a new perspective for revealing the underlying mechanism of trace metal bioavailability and bioaccumulation in marine organisms.
Показать больше [+] Меньше [-]A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation Полный текст
2017
Gorito, Ana M. | Ribeiro, Ana R. | Almeida, C.M.R. | Silva, Adrián M.T.
The presence of organic pollutants in the aquatic environment, usually found at trace concentrations (i.e., between ng L−1 and μg L−1 or even lower, known as micropollutants), has been highlighted in recent decades as a worldwide environmental concern due to their difficult elimination by conventional water and wastewater treatment processes. The relevant information on constructed wetlands (CWs) and their application for the removal of a specific group of pollutants, 41 organic priority substances/classes of substances (PSs) and 8 certain other substances with environmental quality standards (EQS) listed in Directive 2013/39/EU as well as 17 contaminants of emerging concern (CECs) of the Watch List of Decision 2015/495/EU, is herein reviewed. Studies were found for 24 PSs and 2 other substances with EQS: octylphenol, nonylphenol, perfluorooctane sulfonic acid, di(2-ethylhexyl)phthalate, trichloromethane, dichloromethane, 1,2-dichloroethane, pentachlorobenzene, benzene, polychlorinated dibenzo-p-dioxins, naphthalene, fluoranthene, trifluralin, alachlor, isoproturon, diuron, tributyltin compounds, simazine, atrazine, chlorpyrifos (chlorpyrifos-ethyl), chlorfenvinphos, hexachlorobenzene, pentachlorophenol, endosulfan, dichlorodiphenyltrichloroethane (or DDT) and dieldrin. A few reports were also published for 8 CECs: imidacloprid, erythromycin, clarithromycin, azithromycin, diclofenac, estrone, 17-beta-estradiol and 17-alpha-ethinylestradiol. No references were found for the other 17 PSs, 6 certain other substances with EQS and 9 CECs listed in EU legislation.
Показать больше [+] Меньше [-]