Уточнить поиск
Результаты 381-390 из 7,214
Strong variability in nitrogen (N) removal rates in typical agricultural pond from hilly catchment: Evidence from diel and monthly dissolved N2 measurement
2022
Zhang, Wangshou | Li, Hengpeng | Cao, Heng
Ponds, depressional submerged landscapes that can store and process nitrogen (N)-enriched runoff from surrounding uplands, are recognized as biogeochemical hotspots for N removal. Despite their strong potential for N removal, information is limited concerning the specifics of their changing nature. Here, we investigated the dynamics of N removal rate in a typical agricultural pond from a hilly catchment, by unraveling the monthly and diel patterns of N₂ concentrations and fluxes. Our observations showed that the N pollution in the pond was severe. Its averaged total N level reached 3.6 mg L⁻¹, of which ∼72% consisted of NO₃–N. Meanwhile, the water samples were supersaturated with N₂, demonstrating N removal occurring in the pond. Further estimates of net N₂ fluxes indicated that N removal rates exhibited obvious day-and-night and monthly differences. On the diel scale, N removal rates exhibited a distinct diurnal cycle, with nocturnal rates around 20% higher than during the day. Such a diel pattern can be mainly explained by the fluctuation in DO levels, showing that at nighttime when photosynthesis is absent, low DO environments are conducive to N removal. On a monthly scale, the monthly rates ranged from 0.02 to 0.49 mmol N₂ m⁻² h⁻¹ (mean: 0.23 mmol N₂ m⁻² h⁻¹), with generally higher removal rates in the warmer and concurrently rainy months (June–September). N levels in the pond were the corresponding primary explanatory variables. Assembled data from both monthly and hourly scales provided a more complete picture of the changing nature of N removal in ponds. Future work should carefully consider the effects of altered environmental conditions triggered by hydrological events to better reveal the control mechanisms behind the time-immediate N removal from lowland ponds.
Показать больше [+] Меньше [-]Marine sponges as coastal bioindicators of rare earth elements bioaccumulation in the French Mediterranean Sea
2022
Orani, Anna Maria | Vassileva, Emilia | Thomas, Olivier P.
In recent years, the widespread use of rare earth elements (REEs) has raised the issue of their harmful effects on the aquatic environment. REEs are now considered as contaminants of emerging concern. Despite the increasing interest of REEs in modern industry, there is still a lack of knowledge on their potential impact on the environment and especially in the marine environment. In this context, the need for monitoring tools to assess REEs pollution status in marine ecosystems is considered as the first step towards their risk assessment. Similar to mussels, filter-feeder sponges have emerged as a key bio-monitor species for marine chemical pollution. Their key position at a low level of the trophic chain makes them suitable model organisms for the study of REEs potential transfer through the aquatic food web. We therefore undertook a comparative study on seven marine sponge species, assessing their capability to bioaccumulate REEs and to potentially transfer these contaminants to higher positions in the trophic chain. A spike experiment under controlled conditions was carried out and the intra- and inter-species variability of REEs was monitored in the sponge bodies by ICP-MS. Concentrations were found to be up to 170 times higher than the corresponding control specimens. The tubular species Aplysina cavernicola showed the highest concentrations among the studied species. This study shows, for the first time, the potential of marine sponges as bio-monitor of REEs as well as their possible application in the bioremediation of polluted sites.
Показать больше [+] Меньше [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Показать больше [+] Меньше [-]Integrated biotechnology to mitigate green tides
2022
Ren, Cheng-Gang | Liu, Zheng-Yi | Zhong, Zhi-Hai | Wang, Xiao-Li | Qin, Song
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Показать больше [+] Меньше [-]Environmentally relevant exposure to TBBPA and its analogues may not drastically affect human early cardiac development
2022
Zhao, Miaomiao | Yin, Nuoya | Yang, Renjun | Li, Shichang | Zhang, Shuxian | Faiola, Francesco
Tetrabromobisphenol A (TBBPA) and its substitutes and derivatives have been widely used as halogenated flame retardants (HFRs), in the past few decades. As a consequence, these compounds are frequently detected in the environment, as well as human bodily fluids, especially umbilical cord blood and breast milk. This has raised awareness of their potential risks to fetuses and infants. In this study, we employed human embryonic stem cell differentiation models to assess the potential developmental toxicity of six TBBPA-like compounds, at human relevant nanomolar concentrations. To mimic early embryonic development, we utilized embryoid body-based 3D differentiation in presence of the six HFRs. Transcriptomics data showed that HFR exposure over 16 days of differentiation only interfered with the expression of a few genes, indicating those six HFRs may not have specific tissue/organ targets during embryonic development. Nevertheless, further analyses revealed that some cardiac-related genes were dysregulated. Since the heart is also the first organ to develop, we employed a cardiac differentiation model to analyze the six HFRs’ potential developmental toxicity in more depth. Overall, HFRs of interest did not significantly disturb the canonical WNT pathway, which is an essential signal transduction pathway for cardiac development. In addition, the six HFRs showed only mild changes in gene expression levels for cardiomyocyte markers, such as NKX2.5, MYH7, and MYL4, as well as a significant down-regulation of some but not all the epicardial and smooth muscle cell markers selected. Taken together, our results show that the six studied HFRs, at human relevant concentrations, may impose negligible effects on embryogenesis and heart development. Nevertheless, higher exposure doses might affect the early stages of heart development.
Показать больше [+] Меньше [-]Exposure to nanoplastic induces cell damage and nitrogen inhibition of activated sludge: Evidence from bacterial individuals and groups
2022
Tang, Sijing | Qian, Jin | Wang, Peifang | Lu, Bianhe | He, Yuxuan | Yi, Ziyang | Zhang, Yuhang
Wastewater treatment plants (WWTPs) are almost the only place where plastic fragments are artificially removed, resulting in mass accumulation of nanoplastics (NPs). In this research, four different concentrations (0 mg/L, 0.1 mg/L, 1 mg/L, 10 mg/L) of polystyrene nanoplastics (PS-NPs) were used to investigate the cell damage and nitrogen inhibition of activated sludge, exposed in a self-assembled SBR reactor for 30 days. Intracellular reactive oxides (ROS) and extracellular lactate dehydrogenase (LDH) increased with the rise of exposure concentration, and morphological analysis disclosed the creases, collapse, and even rupture of cell membranes. However, exposure damage (PS-NPs ≤ 1 mg/L) appeared to be reversible, attributed to that extracellular polymeric substances (EPS) secretion can thicken the three protective layers outside the membrane. PS-NPs did not disrupt the EPS chemical structure, but increased humic acid content. Prolonged exposure time (from 15 to 30 days) was directly related to the nitrogen inhibition. Due to the habitat changes under PS-NPs exposure, abundance and diversity of microorganisms in the original activated sludge decreased significantly, and the dominant phylum was occupied by Patescibacteria (PS-NPs = 10 mg/L). Changes in enzyme activities of AMO, NR, NIR, and NOR with exposure concentration may explain the conversion of nitrogen in SBR. This research broadens our horizons to understand the response mechanism of activated sludge bacteria to PS-NPs exposure individually and collectively.
Показать больше [+] Меньше [-]Is mulch film itself the primary source of meso- and microplastics in the mulching cultivated soil? A preliminary field study with econometric methods
2022
Xu, Li | Xu, Xiangbo | Li, Chang | Li, Jing | Sun, Mingxing | Zhang, Linxiu
There has been an increasing interest in the pollution caused by meso- and microplastics (MMPs) in terrestrial ecosystems. Mulch film was once considered to be the most important source of MMPs in the mulching cultivated soil. However, the academic community has not given sufficient scientific evidence. In this study, stratified random sampling method was used to selectively interview households in Hebei province, China (400 households, 20 villages, 5 counties). Finally, household characteristics and mulch film use behavior of 41 households were collected, and corresponding soil samples were sampled. The results showed that 1) the abundance of MMPs was 29.3 ± 33.1 items·kg⁻¹ (DW) and the particle size of MMPs was 2.95 × 10³±1.75 × 10³ μm, and the proportion of MMPs derived from Polyethylene (PE) was only 18.8%; 2) the mass of MMPs was 2.90 ± 3.72 mg kg⁻¹ (DW) and the proportion of PE MMPs was 43.75%, which has the highest mass percentage; 3) After controlling the endogenous and dummy variables, the use history of mulch film (HistMF) was found to be positively correlated to the abundance of MMPs and inversely correlated to the particle size, but nor with the mass of MMPs; 4) Regarding the heterogeneous characteristics of MMPs, including particle size, color, shape, and type, the findings found the absence of a significant correlation between HistMF and the abundance and mass of PE. In summary, mulch-derived MMPs are not the primary source of MMPs in the mulching cultivated soil in terms of abundance but probably be in terms of mass.
Показать больше [+] Меньше [-]Outdoor light at night, overweight, and obesity in school-aged children and adolescents
2022
Lin, Li-Zi | Zeng, Xiao-Wen | Deb, Badhan | Tabet, Maya | Xu, Shu-Li | Wu, Qi-Zhen | Zhou, Yang | Ma, Hui-Min | Chen, Duo-Hong | Chen, Gong-Bo | Yu, Hong-Yao | Yang, Bo-Yi | Hu, Qiang | Yu, Yun-Jiang | Dong, Guang-Hui | Hu, Liwen
Previous studies have indicated that outdoor light at night (LAN) is associated with a higher prevalence of overweight or obesity in adults. However, the association of LAN levels with overweight or obesity in children is still unknown. This study utilized data from the Seven Northeastern Cities study, which included 47,990 school-aged children and adolescents (ages 6–18 years). Outdoor LAN levels were measured using satellite imaging data. Weight and height were used to calculate age-sex-specific body mass index (BMI) Z-scores based on the World Health Organization (WHO) growth standards. Overweight status and obesity were defined using the Chinese standard. Information regarding socioeconomic status, sleep-related characteristics, and obesogenic factors were obtained using a questionnaire. A generalized linear mixed model examined the associations of outdoor LAN levels (in quartiles) with the outcomes of interest. Compared to children in the lowest quartile of outdoor LAN levels, children exposed to higher outdoor LAN levels had larger BMI Z-scores and higher odds of being overweight (including obesity) or obese, with the largest estimates in the third quartile [BMI Z-score: β = 0.26, 95% CI: 0.18–0.33; overweight (including obesity): OR = 1.40, 95% CI: 1.25–1.56; obesity: OR = 1.46, 95% CI: 1.29–1.65]. There was a significant sex difference (Pᵢₙₜₑᵣₐcₜᵢₒₙ<0.001) in the association of outdoor LAN levels with BMI Z-scores, and the association was stronger in males. Results remained robust following multiple sensitivity analyses and the adjustment of sleep-related characteristics, obesogenic factors, and environmental exposures. Our findings suggest that higher outdoor LAN levels are associated with larger BMI Z-scores and greater odds of overweight (including obesity) and obesity in school-aged children and adolescents. Further, the association between outdoor LAN levels and BMI Z-scores is stronger in males. Future studies with exposure assessments that consider both outdoor and indoor LAN exposures are needed.
Показать больше [+] Меньше [-]Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China
2022
Liu, Song | Luo, Tianzhi | Zhou, Li | Song, Tianli | Wang, Ning | Luo, Qiong | Huang, Gang | Jiang, Xia | Zhou, Shuhua | Qiu, Yang | Yang, Fumo
Carbonaceous aerosols pose significant climatic impact, however, their sources and respective contribution to light absorption vary and remain poorly understood. In this work, filter-based PM₂.₅ samples were collected in winter of 2021 at three urban sites in Yibin, a fast-growing city in the south of Sichuan Basin, China. The composition characteristics of PM₂.₅, light absorption and source of carbonaceous aerosol were analyzed. The city-wide average concentration of PM₂.₅ was 87.4 ± 31.0 μg/m³ in winter. Carbonaceous aerosol was the most abundant species, accounting for 42.5% of the total PM₂.₅. Source apportionment results showed that vehicular emission was the main source of PM₂.₅ during winter, contributing 34.6% to PM₂.₅. The light absorption of black carbon (BC) and brown carbon (BrC) were derived from a simplified two-component model. We apportioned the light absorption of carbonaceous aerosols to BC and BrC using the Least Squares Linear Regression with optimal angstrom absorption exponent of BC (AAEBC). The average absorption of BC and BrC at 405 nm were 51.6 ± 21.5 Mm⁻¹ and 17.7 ± 8.0 Mm⁻¹, respectively, with mean AAEBC = 0.82 ± 0.02. The contribution of BrC to the absorption of carbonaceous reached 26.1% at 405 nm. Based on the PM₂.₅ source apportionment and the mass absorption cross-section (MAC) value of BrC at 405 nm, vehicle emission was found to be the dominant source of BrC in winter, contributing up to 56.4%. Therefore, vehicle emissions mitigation should be the primary and an effective way to improve atmospheric visibility in this fast-developing city.
Показать больше [+] Меньше [-]The impact of marine debris on cetaceans with consideration of plastics generated by the COVID-19 pandemic
2022
Eisfeld-Pierantonio, Sonja Mareike | Pierantonio, Nino | Simmonds, Mark P.
The accumulation of human-derived debris in the oceans is a global concern and a serious threat to marine wildlife. There is a volume of evidence that points to deleterious effects of marine debris (MD) on cetaceans in terms of both entanglement and ingestion. This review suggests that about 68% of cetacean species are affected by interacting with MD with an increase in the number of species reported to have interacted with it over the past decades. Despite the growing body of evidence, there is an ongoing debate on the actual effects of plastics on cetaceans and, in particular, with reference to the ingestion of microplastics and their potential toxicological and pathogenic effects. Current knowledge suggests that the observed differences in the rate and nature of interactions with plastics are the result of substantial differences in species-specific diving and feeding strategies. Existing projections on the production, use and disposal of plastics suggest a further increase of marine plastic pollution. In this context, the contribution of the ongoing COVID-19 pandemic to marine plastic pollution appears to be substantial, with potentially serious consequences for marine life including cetaceans. Additionally, the COVID-19 pandemic offers an opportunity to investigate the direct links between industry, human behaviours and the effects of MD on cetaceans. This could help inform management, prevention efforts, describe knowledge gaps and guide advancements in research efforts. This review highlights the lack of assessments of population-level effects related to MD and suggests that these could be rather immediate for small populations already under pressure from other anthropogenic activities. Finally, we suggest that MD is not only a pollution, economic and social issue, but also a welfare concern for the species and populations involved.
Показать больше [+] Меньше [-]