Уточнить поиск
Результаты 401-410 из 7,214
Does ancient permafrost-derived organic carbon affect lake zooplankton growth? An experimental study on Daphnia magna
2022
Su, Yaling | Gan, Yingxin | Shi, Limei | Li, Kuanyi | Liu, Zhengwen
The popular paradigm in trophic dynamic theory is that contemporary autochthonous organic matter (e.g., phytoplankton) sustains consumer growth, whereas aged allochthonous organic matter is conceptually considered recalcitrant resources that may only be used to support consumer respiration but suppress consumer growth. This resource-age paradigm has been challenged by a growing body of recent evidence that ancient (radiocarbon depleted) organic carbon (OC) released from glaciers and permafrost can be incorporated by consumers in aquatic systems. However, little information is available regarding the food quality of ancient terrestrial OC and how it impacts the growth of consumers in lakes. Here, ancient dissolved organic carbon (DOC) was extracted from frozen soils in an alpine lake catchment. The contents of polyunsaturated fatty acids (PUFAs) in soil DOC increased significantly after bioconversion by heterotrophic bacteria. The utilization of soil DOC by heterotrophic bacteria also increased the total phosphorus concentration in the systems. Gammaproteobacteria and Betaproteobacteria showed a strong negative correlation with the percentage contents of fluorescent components, including humic-like and tyrosine-like components. Daphnia magna were fed Auxenochlorella vulgaris and ancient DOC plus heterotrophic bacteria. The contents of PUFAs and the growth of zooplankton were influenced by the pre-conversion time of ancient DOC by bacteria. When ancient DOC was pre-converted by bacteria for 27 days, D. magna fed on the mixed diets showed the highest body length (3.40 mm) and intrinsic rate of increase in population (0.49 d⁻¹). Our findings provide direct evidence that ancient terrestrial OC can be an important subsidy for lake secondary production, which have important implications for food webs in high-altitude and polar lakes.
Показать больше [+] Меньше [-]Effect of sampling duration on the estimate of pollutant concentration behind a heavy-duty vehicle: A large-eddy simulation
2022
Xie, Jingwei | Liu, Chun-Ho | Huang, Yuhan | Mok, Wai-Chuen
Plume chasing is cost-effective, measuring individual, on-road vehicular emissions. Whereas, wake-flow-generated turbulence results in intermittent, rapid pollutant dilution and substantial fluctuating concentrations right behind the vehicle being chased. The sampling duration is therefore one of the important factors for acquiring representative (average) concentrations, which, however, has been seldom addressed. This paper, which is based on the detailed spatio-temporal dispersion data after a heavy-duty truck calculated by large-eddy simulation (LES), examines how sampling duration affects the uncertainty of the measured concentrations in plume chasing. The tailpipe dispersion is largely driven by the jet-like flows through the vehicle underbody with approximate Gaussian concentration distribution for x ≤ 0.6h, where x is the distance after the vehicle and h the characteristic vehicle size. Thereafter for x ≥ 0.6h, the major recirculation plays an important role in near-wake pollutant transport whose concentrations are highly fluctuating and positively shewed. Plume chasing for a longer sampling duration is more favourable but is logistically impractical in busy traffic. Sampling duration, also known as averaging time in the statistical analysis, thus has a crucial role in sampling accuracy. With a longer sampling (averaging) duration, the sample mean concentration converges to the population mean, improving the sample reliability. However, this effect is less pronounced in long sampling duration. The sampling accuracy is also influenced by the locations of sampling points. For the region x > 0.6h, the sampling accuracy is degraded to a large extent. As a result, acceptable sample mean is hardly achievable. Finally, frequency analysis unveils the mechanism leading to the variance in concentration measurements which is attributed to sampling duration. Those data with frequency higher than the sampling frequency are filtered out by moving average in the statistical analyses.
Показать больше [+] Меньше [-]Nanoanalysis of the leaching process simulation of Pb in agricultural soil
2022
Liu, Shuyu | Min, Xin | Xiang, Minghui | Wang, Jiangli | Tang, Lei | Liu, Li
Using the Spectral characteristics of gold nanorods to investigate heavy metals Pb in agricultural soils. Studied included: (1) The effects of humic acid on Pb transformation and its formation changing were explored. The laboratory model was established to simulate Pb leaching process in the soil and investigated the change of total Pb content at different layers. (2) The migration and transformation of different forms Pb were studied by the nano system. The effect of humic acid and pH were analyzed based on the nano-analysis method. (3) The relationship between various forms Pb irons were analyzed. (4) The data showed that ion exchange state and iron-manganese oxidation state Pb were more likely to enriched at 0 cm depth, and organic bound state was more likely to enriched at 10 cm depth. Humic acid increased the solidify ability of different forms of Pb in agricultural soil, and the analysis system was efficient to supply the exactly transition process.
Показать больше [+] Меньше [-]Effects of exposure to per- and polyfluoroalkyl substances on vaccine antibodies: A systematic review and meta-analysis based on epidemiological studies
2022
Zhang, Xin | Xue, Liang | Deji, Zhuoma | Wang, Xin | Liu, Peng | Lü, Jing | Zhou, Ruke | Huang, Zhenzhen
Vaccines are essential for children to defend against infection. Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants with the characteristics of persistence and bioaccumulation. PFAS exposure can affect the function of the nervous, endocrine, and immune system of animals and humans. We aimed to conduct a systematic review and meta-analysis of the epidemiological studies investigating potential relationships between PFAS exposure and vaccine antibody levels, and assessed whether PFAS would affect vaccine response in healthy children. A literature search was conducted in PubMed, Web of Science, and Scopus databases up to February 2022. We chose studies that measured serum vaccines antibodies and PFAS concentrations of the participants. Essential information, including mean difference of percentage change, regression coefficient, odds ratio, Spearman correlation coefficient, and 95% confidence intervals, were extracted from the selected studies to conduct descriptive analysis and meta-analysis where appropriate. The qualities of these studies were evaluated as well. Finally, nine epidemiological studies about children met our inclusion criteria. A high degree of heterogeneity is observed in terms of breastfeeding time, confounder control, and detection method. Exposure to perfluorooctanoic acid and perfluorohexane sulfonic acid is negatively associated with tetanus antibody level in children without heterogeneity by Cochran's Q test (p = 0.26; p = 0.55), and exposure to perfluorohexane sulfonate is negatively associated with tetanus antibody level but with heterogeneity (p = 0.04). This comprehensive review suggests that PFAS can have adverse health effects on children by hindering the production of vaccine antibodies. There are some consistent and negative associations between children exposure to certain PFAS and tetanus antibody level. The association of the other four vaccines (measles, rubella, mumps, and influenza) with PFAS remains uncertain, because very few studies are available. Further studies are needed to validate the possible associations.
Показать больше [+] Меньше [-]Thallium distribution in an estuary affected by acid mine drainage (AMD): The Ría de Huelva estuary (SW Spain)
2022
Cánovas, Carlos Ruiz | Basallote, María Dolores | Macías, Francisco | Freydier, Rémi | Parviainen, Annika | Pérez López, Rafael
This study investigates the behavior of Tl in the Ría de Huelva (SW Spain), one of the most metal polluted estuaries in the world. Dissolved Tl concentration displayed a general decrease across the estuary during the dry season (DS); from 5.0 to 0.34 μg/L in the Tinto and Odiel estuaries, respectively, to 0.02 μg/L in the channel where the rivers join. A slighter decrease was observed during the wet season (WS) (from 0.72 to 0.14 μg/L to 0.02 μg/L) due to the dilution effect of rainfalls in the watersheds. These values are 3 orders of magnitude higher than those reported in other estuaries worldwide. Different increases in Tl concentrations with salinity were observed in the upper reaches of the Tinto and Odiel estuaries, attributed to desorption processes from particulate matter. Chemical and mineralogical evidences of particulate matter, point at Fe minerals (i.e., jarosite) as main drivers of Tl particulate transport in the estuary. Unlike other estuaries worldwide, where a fast sorption process onto particulate matter commonly takes place, Tl is mainly desorbed from particulate matter in the Tinto and Odiel estuaries. Thus, Tl may be released back from jarositic particulate matter across the salinity gradient due to the increasing proportion of unreactive TlCl⁰ and K⁺ ions, which compete for adsorption sites with Tl⁺ at increasing salinities. A mixing model based on conservative elements revealed a 6-fold increase in Tl concentrations related to desorption processes. However, mining spills like that occurred in May 2017 may contribute to enhance dissolved and particulate Tl concentrations in the estuary as well as to magnify these desorption processes (up to around 1100% of Tl release), highlighting the impact of the mine spill on the remobilization of Tl from the suspended matter to the water column.
Показать больше [+] Меньше [-]Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees
2022
Scivicco, Marcello | Nolasco, Agata | Esposito, Luigi | Ariano, Andrea | Squillante, Jonathan | Esposito, Francesco | Cirillo Sirri, Teresa | Severino, Lorella
The Covid-19 outbreak had a critical impact on a massive amount of human activities as well as the global health system. On the other hand, the lockdown and related suspension of working activities reduced pollution emissions. The use of biomonitoring is an efficient and quite recent tool to assess environmental pollution through the analysis of a proper bioindicator, such as bees. This study set out to ascertain the impact of the Covid-19 pandemic lockdown on the environmental occurrence of eleven heavy metals in the Campania region (Italy) by analyzing bees and bee products. A further aim of this study was the assessment of the Honeybee Contamination Index (HCI) in three different areas of the Campania region and its comparison with other Italian areas to depict the current environmental pollutants levels of heavy metals. The results showed that the levels of heavy metals bioaccumulated by bees during the pandemic lockdown (T1) were statistically lower than the sampling times after Covid-19 restrictions and the resumption of some or all activities (T2 and T3). A comparable trend was observed in wax and pollen. However, bee, pollen, and wax showed higher levels of Cd and Hg in T1 than T2 and T3. The analysis of the HCI showed a low contamination level of the sampling sites for Cd and Pb, and an intermediate-high level as regards Ni and Cr. The biomonitoring study highlighted a decrease of heavy metals in the environmental compartments due to the intense pandemic restrictions. Therefore, Apis mellifera and other bee products remain a reliable and alternative tool for environmental pollution assessment.
Показать больше [+] Меньше [-]Degradation of phenanthrene by consortium 5H under hypersaline conditions
2022
Fan, Weihua | Jin, Jiaqi | Zhang, Zuotao | Han, Lu | Li, Keyuan | Wang, Chongyang
PAHs have been widely detected to accumulate in saline and hypersaline environments. Moderately halophilic microbes are considered the most suitable player for the elimination of PAHs in such environments. In this study, consortium 5H was enriched under 5% salinity and completely degraded phenanthrene in 5 days. By high-throughput sequencing, consortium 5H was identified as being mainly composed of Methylophaga, Marinobacter and Thalassospira. Combined with the investigation of intermediates and enzymatic activities, the degradation pathway of consortium 5H on phenanthrene was proposed. Consortium 5H was identified as having the ability to tolerate a wide range of salinities (1%–10%) and initial PAH concentrations (50 mg/L to 400 mg/L). It was also able to function under neutral to weak alkaline conditions (pH from 6 to 9) and the phytotoxicity of the produced intermediates showed no significant difference with distilled water. Furthermore, the metagenome of consortium 5H was measured and analyzed, which showed a great abundance of catabolic genes contained in consortium 5H. This study expanded the knowledge of PAH-degradation under hypersaline environments and consortium 5H was proposed to have good potential for the elimination of PAH pollution in saline/hypersaline environments.
Показать больше [+] Меньше [-]Importance of ammonia nitrogen potentially released from sediments to the development of eutrophication in a plateau lake
2022
Ding, Shuai | Dan, Solomon Felix | Liu, Yan | He, Jia | Zhu, Dongdong | Jiao, Lixin
Sedimentary nitrogen (N) in lakes significantly influenced by eutrophication plays a detrimental role on the ecological sustainability of aquatic ecosystems. Here, we conducted a thorough analysis of the importance of N potentially released from sediments during the shift of “grass-algae” ecosystem in plateau lakes. From 1964 to 2013, the average total amount of sedimentary potential mineralizable organic nitrogen (PMON) and exchangeable N in whole Lake Dianchi were 5.50 × 10³ t and 3.44 × 10³ t, respectively. NH₄⁺-N was the main product (>90%) of sedimentary PMON mineralization. The PMON in sediments had great release potential, which tended to regulate the distribution of aquatic plants and phytoplankton in Lake Dianchi and facilitated the replacement of dominant populations. Moreover, NH₄⁺-N produced by sedimentary PMON mineralization and exchangeable NH₄⁺-N have increased the difficulty and complexity of ecological restoration in Lake Dianchi to a certain extent. This study highlights the importance of sedimentary N in lake ecosystem degradation, showing the urgent need to reduce the continuous eutrophication of lakes and restore the water ecology.
Показать больше [+] Меньше [-]Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method
2022
Zhu, Yuling | Sheng, Yating | Liu, Yuxin | Chen, Jiemin | He, Xiaoyun | Wang, Wenzhong | Hu, Baowei
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO₂. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe–U bacteria, can co-precipitate U and Fe to form stable Fe–U solids. Column experiments running for 4 months demonstrated the production of U(IV)–O–Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe–U bacteria. The reoxidation experiments revealed the U(IV)–O–Fe(II) precipitates were more stable than UO₂. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO₄ chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Показать больше [+] Меньше [-]Multimedia distribution of polycyclic aromatic hydrocarbons in the Wang Lake Wetland, China
2022
Shi, Changhe | Qu, Chengkai | Sun, Wen | Zhou, Jingzhe | Zhang, Jiawei | Cao, Yu | Zhang, Yuan | Guo, J. (Jiahua) | Zhang, Jiaquan | Qi, Shihua
The Wang Lake Wetland is a highly valued area that is protected due to its high biodiversity. The wetland has a complicated hydrological regime and is subject to frequent human disturbance. We hypothesize that fluctuating hydrology and human activities have varied contributions to the temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in the wetland. Soil (SS), sediment (SD), and water, to acquire dissolved phase (DP) and suspended particulate matter (SPM), samples were collected from eight locations during low- and high-flow periods to elucidate multimedia phase distribution and transport of PAHs. Following the onset of the rainy season, the concentration of SPM-associated PAHs increased significantly, while the DP PAHs remained stable. Individual PAH ratios showed that, although pyrogenic sources are common, petrogenic derived compounds are the main source of PAHs in the Wang Lake Wetland. During the high-flow period, the empirical values for logarithms of the organic carbon-normalized partition coefficients (log KOC) of individual PAH-congeners were lower than the corresponding field-observed log KOC values from the SPM-DP and SD-DP systems, reflecting the complexity in evaluating multi-phase PAH partitioning. During the high-flow period, temperature-driven changes may have changed the sediment from a sink to a source for some high molecular weight PAHs. It was determined that human activities governed the PAH loading in the low-flow period, whereas during high-flow conditions, increased rainfall, higher temperatures, and fishery activity are the main factors controlling PAH input to the Wang Lake Wetland.
Показать больше [+] Меньше [-]