Уточнить поиск
Результаты 441-450 из 4,924
Distribution and physicochemical properties of particulate matter in swine confinement barns
2019
Shen, Dan | Wu, Sheng | Li, Zhaojian | Tang, Qian | Dai, Pengyuan | Li, Yansen | Li, Chunmei
Air pollutants accumulated in confined livestock barns could impact the health of animals and staff. Particulate matter (PM) and ammonia (NH3) concentrations are typically high in enclosed livestock houses with weak ventilation. The objective of this study was to investigate the distribution of PM in different size fractions and the levels of NH3 in a high-rise nursery (HN) barn and a high-rise fattening (HF) barn on a swine farm and to analyse the physicochemical properties of fine PM (PM2.5, PM with aerodynamic diameter ≤ 2.5 μm). The concentrations of total suspended particles (TSP, PM with aerodynamic diameter ≤ 100 μm), inhalable PM (PM10, PM with aerodynamic diameter ≤ 10 μm), PM2.5 and NH3 were monitored continuously for 6 d in each barn. The results showed that the concentrations of PM and NH3 varied with position, they were significantly higher inside the barns than outside (P < 0.01) and significantly higher in the forepart than at the rear of the two barns (P < 0.05). In the HF barn, the values of the two parameters were 0.777 ± 0.2 mg m−3 and 26.7 ± 7 mg m−3, respectively, significantly higher than the values observed in the HN barn at all monitored sites (P < 0.05). The PM concentrations increased markedly during feeding time in the two barns. Chemical characteristics analysis revealed that the main sources of PM2.5 in the two barns may have consisted of blowing dust, feed, mineral particles and smoke. In conclusion, the air quality at the forepart was worse than that at the rear of the barns. Activities such as feeding could increase the PM concentrations. The components of PM2.5 in the two barns were probably blowing dust, feed, mineral particles and smoke from outside.
Показать больше [+] Меньше [-]Effects of pyrethroid insecticides on hypothalamic-pituitary-gonadal axis: A reproductive health perspective
2019
Ye, Xiaoqing | Liu, Jing
Pyrethroids, a class of ubiquitous insecticides, have been recognized as endocrine-disrupting chemicals (EDCs). A lot of studies have implied the endocrine-disrupting effects of pyrethroids on the hypothalamic-pituitary-gonadal (HPG) axis. However, there are few review articles regarding the effects of pyrethroids on the HPG axis of mammal and human, especially new research progress made in this area. The present review sums up the effects of pyrethroids on the HPG axis-related reproductive outcomes, including epidemiological investigations based on human biomonitoring, animal studies and in vitro tests. Mechanisms have described that the endocrine-disrupting effects of pyrethroids on mammal can be mediated via the interaction with steroid receptors, the direct action on ion channels and signaling molecules. Finally, we summarize the current research gaps and suggest future directions in this topic.
Показать больше [+] Меньше [-]High yield of hydrogen peroxide on modified graphite felt electrode with nitrogen-doped porous carbon carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals
2019
Yu, Fangke | Tao, Ling | Cao, Tianyi
The aim of this work was to develop a new modified graphite felt (GF) as carbonaceous cathode for electro-Fenton (EF) application loaded with nitrogen-doped porous carbon (NPC) carbonized by zeolitic imidazolate framework-8 (ZIF-8) nanocrystals as carbon precursor. At initial pH 7, the highest generation rate of H₂O₂ was 0.74 mg h⁻¹ cm⁻² by applying 12.5 mA cm⁻² by modified cathode, but in the same condition, the GF only had 0.067 mg h⁻¹ cm⁻². The production efficiency increased 10 times. Additionally, phenol (50 mg L⁻¹) could be largely removed by NPC modified cathode, the mineralization ratio and TOC reached 100% and 82.61% at 120 min of optimization condition, respectively. The NPC cathode kept its stability after 5 cycles. The materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and linear sweep voltammetry (LSV). The results demonstrated that a homogenous NPC covered the carbon-based material GF. The existing graphitic-N and sp² carbon of NPC promoted the electron transfer between carbon surface and oxygen molecules, as well as accelerated the oxygen reduction reaction (ORR) and the modified graphite felt had much higher electrocatalytic activity. In this work, several manufacturing parameters like the current, pH and load of NPC were optimized. The optimized design could improve the efficiency of new cathode with in situ electro-chemical production of H₂O₂ and significantly offer a potential material for degradation of organic pollutants.
Показать больше [+] Меньше [-]Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge
2019
Xia, Hui | Chen, Jingyang | Chen, Xuemin | Huang, Kui | Wu, Ying
Vermicomposting is a green technology used in the recycling of sewage sludge using the joint action of earthworms and microorganisms. Although tetracycline is present in abundance in sewage sludge, little attention has been given to its influence on vermicomposts. This study investigated the effects of different tetracycline concentrations (0, 100, 500 and 1000 mg/kg) on the decomposition of organic matter, microbial community and antibiotic resistance genes (ARGs) during vermicomposting of spiked sludge. The results showed that 100 mg/kg tetracycline could stimulate earthworms’ growth, accompanied by the highest humification and decomposition rates of organic matter in the sludge. The abundance of active microbial cells and diversity decreased with the increase in tetracycline concentrations. The member of Bacteroidetes dominated in the tetracycline spiked treatments, especially in the higher concentration treatments. Compared to its counterparts, the addition of tetracycline significantly increased the abundances of ARGs (tetC, tetM, tetX, tetG and tetW) and Class 1 integron (int-1) by 4.7–186.9 folds and 4.25 folds, respectively. The genera of Bacillus and Mycobacterium were the possible bacterial pathogen hosts of ARGs enriched in tetracycline added group. This study suggests that higher concentration of tetracycline residual can modify microbial communities and increase the dissemination risk of ARGs for final sludge vermicompost.
Показать больше [+] Меньше [-]Preliminary study of cellular metal accumulation in two Antarctic marine microalgae – implications for mixture interactivity and dietary risk
2019
Koppel, Darren J. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Localised sites in Antarctica are contaminated with mixtures of metals, yet the risk this contamination poses to the marine ecosystem is not well characterised. Recent research showed that two Antarctic marine microalgae have antagonistic responses to a mixture of five common metals (Koppel et al., 2018a). However, the metal accumulating potential and risk to secondary consumers through dietary exposure are still unknown. This study investigates cellular accumulation following exposure to a mixture of cadmium, copper, nickel, lead, and zinc for the Antarctic marine microalgae, Phaeocystis antarctica and Cryothecomonas armigera. In both microalgae, cellular cadmium, copper, and lead concentrations increased with increasing exposures while cellular nickel and zinc did not. For both microalgae, copper in the metal mixture drives inhibition of growth rate with R2 values > -0.84 for all cellular fractions in both species and the observed antagonism was likely caused by zinc competition, having significantly positive partial regressions. Metal accumulation to P. antarctica and C. armigera is likely to be toxic to consumer organisms, with low exposure concentrations resulting in cellular concentrations of 500 and 1400 × 10−18 mol Zn cell−1 and 160 and 320 × 10−18 mol Cu cell−1, respectively.
Показать больше [+] Меньше [-]Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation
2019
Tourinho, Paula S. | Kočí, Vladimír | Loureiro, Susana | van Gestel, Cornelis A.M.
There is an increasing awareness of the threats posed by the worldwide presence of microplastics (MPs) in the environment. Due to their high persistence, MPs will accumulate in the environment and their quantities tend to increase with time. MPs end up in environments where often also chemical contaminants are present. Since the early 2000s, the number of studies on the sorption of chemicals to plastic particles has exponentially increased. The objective of this study was to critically review the literature to identify the most important factors affecting the sorption of chemical contaminants to MPs. These factors include the physicochemical properties of both the MPs and the chemical contaminants as well as environmental characteristics. A limited number of studies on soil together with an increased notion of the importance of this compartment as a final sink for MPs was observed. Therefore, we assessed the distribution of model chemicals (two PCBs and phenanthrene) in the soil compartment in the presence of MPs using a mass balance model. The results showed a high variation among chemicals and microplastic types. Overall, a higher partitioning to MPs of chemical contaminants in soil is expected in comparison to aquatic environments. As sorption to a large extent determines bioavailability, the effects of combined exposure to chemicals and MPs on the toxicity and bioaccumulation in biota are discussed. Finally, some considerations regarding sorption and toxicity studies using MPs are given.
Показать больше [+] Меньше [-]The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China
2019
Gao, Chong-Jing | Xia, Lin-Lin | Wu, Chen-Chou | Wong, Charles S. | Guo, Ying
Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are legacy brominated flame retardants which are still produced and used in China. In this study, 187 surface soils from the Pearl River Delta (PRD) urban conurbation in China were collected, and the effects of urban conurbation development on the concentrations, distributions and human exposure risk of HBCDs and TBBPA were investigated. The concentration ranges of Σ3HBCD (sum of α-, β-, and γ-HBCD) and TBBPA in soil were below the limit of quantification (<LOQ) to 300 ng g−1 dry weight (dw) and < LOQ to 53.1 ng g−1 dw, respectively. Concentration levels of HBCDs and TBBPA in the PRD were affected both by distributions of land-use type and by the location of the city. Soils from residential areas contained the highest concentrations of Σ3HBCD (median: 1.75 ng g−1 dw) and TBBPA (1.92 ng g−1 dw) among all land-use types. In addition, soils from the central PRD had higher Σ3HBCD and TBBPA levels (0.46 and 0.90 ng g−1 dw) than those from the surrounding areas (0.17 and 0.07 ng g−1 dw). The concentrations of Σ3HBCD and TBBPA were highly correlated with urbanization level, population density, regional GDP and per capita income in all cities studied (p < 0.01), which indicates that the prosperity of the urban conurbation may play an important role in soil contamination of HBCDs and TBBPA in the PRD. Children living in residential areas had the highest estimated daily intakes of Σ3HBCD (7.09 pg kg−1 d−1) and TBBPA (7.76 pg kg−1 d−1), suggesting that people living in residential areas have a relatively higher exposure risk of HBCDs and TBBPA. This is a comprehensive study to report the effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of HBCDs and TBBPA in soil in China.
Показать больше [+] Меньше [-]Dechlorane plus in greenhouse and conventional vegetables: Uptake, translocation, dissipation and human dietary exposure
2019
Sun, Jianqiang | Wu, Yihua | Tao, Ninger | Lv, Li | Yu, Xiaoyan | Zhang, Anping | Qi, Hong
In an attempt to evaluate the behavior of Dechlorane plus (DP) in soil-vegetable systems, this work investigated the uptake and translocation of DP by vegetables and the dissipation of DP in soil under greenhouse and conventional conditions. To address human dietary exposure to DP, estimated dietary intake via vegetable consumption was calculated. The uptake potential indexes of DP from soil into root for tomato and cucumber cultivated under different conditions ranged from 0.089 to 0.71. The ranges of uptake potential indexes of DP from resuspended soil particles into stem, leaf and fruit were 0.68–0.78, 0.27–0.42 and 0.39–0.75, respectively. The uptake potential indexes in greenhouse vegetables were generally higher than those in conventional vegetables when the vegetables had been planted in contaminated soil, indicating that greenhouse enhanced the uptake of DP with a high soil concentration by vegetables. The translocation factor (TF) values of DP in vegetables were in the range of 0.022–0.17, indicating that DP can be transported from root to fruit even though it has a high octanol water partition coefficient (KOW). The half-lives of DP dissipation in soil ranged from 70 to 102 days. The dissipation of DP in greenhouse soil was slightly slower than that in conventional soil. Higher estimated dietary intake (EDI) values of DP via greenhouse vegetables were observed due to the higher concentration of DP in greenhouse vegetables than conventional vegetables. These results suggested that greenhouses should not be adopted for vegetable production in contaminated regions.
Показать больше [+] Меньше [-]Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors
2019
Sayahi, T. | Kaufman, D. | Becnel, T. | Kaur, K. | Butterfield, A. | Collingwood, S. | Zhang, Y. | Gaillardon, P.-E. | Kelly, K.E.
Low-cost particulate matter (PM) air quality sensors are becoming widely available and are being increasingly deployed in ambient and home/workplace environments due to their low cost, compactness, and ability to provide more highly resolved spatiotemporal PM concentrations. However, the PM data from these sensors are often of questionable quality, and the sensors need to be characterized individually for the environmental conditions under which they will be making measurements. In this study, we designed and assessed a cost-effective (∼$700) calibration chamber capable of continuously providing a uniform PM concentration simultaneously to multiple low-cost PM sensors and robust calibration relationships that are independent of sensor position. The chamber was designed and evaluated with a Computational Fluid Dynamics (CFD) model and a rigorous experimental protocol. We then used this new chamber to calibrate 242 Plantower PMS 3003 sensors from two production lots (Batches I and II) with two aerosol types: ammonium nitrate (for Batches I and II) and alumina oxide (for Batch I). Our CFD models and experiments demonstrated that the chamber is capable of providing uniform PM concentration to 8 PM sensors at once within 6% error and with excellent reliability (intraclass correlation coefficient > 0.771). The study identified two malfunctioning sensors and showed that the remaining sensors had high linear correlations with a DustTrak monitor that was calibrated for each aerosol type (R2 > 0.978). Finally, the results revealed statistically significant differences between the responses of Batches I and II sensors to the same aerosol (P-value<0.001) and the Batch I sensors to the two different aerosol types (P-value<0.001). This chamber design and evaluation protocol can provide a useful tool for those interested in systematic laboratory characterization of low-cost PM sensors.
Показать больше [+] Меньше [-]Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
2019
Zhao, Ling | Nan, Hongyan | Kan, Yue | Xu, Xiaoyun | Qiu, Hao | Cao, Xinde
Biochar as a porous carbon material could be used for improving soil physical and chemical properties, while insufficient attention has been paid to potential risks induced by infiltration of heavy metals in the runoff water flowing through biochar-amended soil. Four different soil-biochar matrices with same volumes were constructed including soil alone (M1), biochar alone (M2), soil-biochar layering (M3) and soil-biochar mixing (M4). Leaching experiments were conducted with Pb, Cu, and Zn contaminated runoff water. Results showed that biochar amendment greatly improved the water permeation, and the infiltration rates in M2, M3, and M4 were 2.85–23.0 mm min⁻¹, being much higher than those in M1 (1.33–4.05 mm min⁻¹), though the rates decreased as the leaching volumes increased. However, biochar induced more Pb, Cu, and Zn infiltrated through soil-biochar matrix. After 350-L leaching, M1 retained about 95% Pb, 90% Cu, and 36% Zn, while M2 only retained 4.80% Pb, 17.4% Cu, and 4.01% Zn; about 30% Pb, 80% Cu, and 15% Zn were retained in M3 and M4. Notably, Zn was trapped first and then re-leached into the filtrate, which resulted in a much higher effluent Zn than the influent Zn at the later stage. However, the unit weight of biochar showed a higher capacity for retaining heavy metals compared to per unit of soil. Under the dynamic water flow, all benefits and disadvantages induced by biochar were weakened with its physical disintegration. Biochar as soil amendment can enhance plant growth via ameliorating soil structure, while it would pose risks to environment because of large penetration of heavy metals. If biochar was compacted to form a denser physical structure, perhaps more heavy metals could be retained.
Показать больше [+] Меньше [-]