Уточнить поиск
Результаты 4401-4410 из 4,924
Study of organochlorine pesticides and heavy metals in soils of the Juarez valley: an important agricultural region between Mexico and the USA
2019
Núñez-Gastélum, José A. | Hernández-Carreón, Stephanie | Delgado-Ríos, Marcos | Flores-Marguez, Juan Pedro | Meza-Montenegro, María M. | Osorio-Rosas, Claudia | Cota-Ruiz, Keni | Gardea-Torresdey, Jorge L.
The Juarez Valley is an important agricultural region in northern Mexico, conveniently organized into three modules (I to III). For decades, their soils have been exposed to organochlorine pesticides (OCPs) and also have been irrigated with wastewaters, which may contain heavy metals. Nowadays, there is very limited information regarding the presence of OCPs and heavy metals in these soils. Thus, the aim of this study was to diagnose these soils for OCPs and heavy metal content by using gas chromatography coupled with electron micro-capture detector and atomic absorption spectrometry, respectively. The results indicated that 4,4′-dichlorodiphenyldichloroethylene and 4,4′-dichlorodiphenyltrichloroethane were primarily disseminated across the three modules since they were found in 100% and 97% of the analyzed soils, respectively. According to international regulations, none of the determined OCP concentrations are out of the limits. Additionally, the Cu, Zn, Fe, Pb, and Mn were found in all sampled soils from the three modules. The highest concentration of Fe was found in module II (1902.7 ± 332.2 mg kg⁻¹), followed by Mn in module III (392.43 ± 74.43 mg kg⁻¹), Zn in module I (38.36 ± 26.57 mg kg⁻¹), Pb in module II (23.48 ± 6.48 mg kg⁻¹), and Cu in module I (11.04 ± 3.83 mg kg⁻¹) (p ≤ 0.05). These values did not exceed the limits proposed by international standards. The Cd was detected in most of the analyzed soils and all their values, with an average of 2 mg kg⁻¹, surpassed the Mexican standards (0.35 mg kg⁻¹). This study has mapped the main OCPs and heavy metals in the Juarez Valley and can serve as a starting point to further monitor the behave of xenobiotics. Since these recalcitrant compounds might be bio-accumulated in biological systems, further analytical methods, as well as remediation techniques, should be developed.
Показать больше [+] Меньше [-]Role of Festuca rubra and Festuca arundinacea in determinig the functional and genetic diversity of microorganisms and of the enzymatic activity in the soil polluted with diesel oil
2019
Borowik, Agata | Wyszkowska, Jadwiga | Gałązka, Anna | Kucharski, Jan
The objective of this study was to analyze the effect of two grass species, i.e. red fescue (Festuca rubra) and tall fescue (F. arundinacea), on the functional and genetic diversity of soil-dwelling microorganisms and on the enzymatic activity of soil not polluted and polluted with diesel oil. Grasses were examined for their effectiveness in accelerating degradation of PAHs introduced into soil with diesel oil. A growing experiment was conducted in Kick-Brauckman pots. The soil not polluted and polluted with diesel oil (7 cm³ kg⁻¹ d.m.) was determined for the count of bacteria, colony development index, ecophysiological diversity index, functional diversity (using Biolog system), genetic diversity of bacteria (using NGS), enzymatic activity, and content of hydrocarbons. Study results demonstrated disturbed homeostasis of soil. The toxic effect of diesel oil on grasses alleviate with time since soil pollution. The yield of the first swath of red fescue decreased by 98% and that of tall fescue by 92%, whereas the yields of the second swath decreased by 82% and 89%, and these of the third swath by 50% and 47%, respectively. Diesel oil diminished also the functional and genetic diversity of bacteria. The use of grasses significantly decreased contents of C₆-C₁₂ (gasoline total), C₁₂-C₃₅ mineral oils, BTEX (volatile aromatic hydrocarbons), and PAHs in the soil, as well as enabled restoring the microbiological equilibrium in the soil, and increased functional and genetic diversity of bacteria. For this reason, both analyzed grass species, i.e. Festuca rubra and F. arundinacea, may be recommended for the remediation of soil polluted with diesel oil.
Показать больше [+] Меньше [-]Toxicological aspects of trihalomethanes: a systematic review
2019
de Castro Medeiros, Luciana | de Alencar, Feliphe Lacerda Souza | Navoni, Julio Alejandro | de Araujo, André Luis Calado | do Amaral, Viviane Souza
Chlorine is considered the most used chemical agent for water disinfection worldwide. However, water chlorination can lead to by-product generation which can be toxic to humans. The present study aimed to perform a systematic review on the toxicity of trihalomethanes (THMs) through bioindicators of cytotoxicity, genotoxicity, and mutagenicity. The results showed that studies on the effects of THMs on DNA are a current research concern for evaluating the toxicity of the pure compounds and real samples involving several types including water for recreational use, reused water, and drinking water. THMs deleterious effects have been assessed using several biosystems, where the Ames test along with experimental animal models were the most cited. A wide range of THM concentrations have been tested. Nevertheless, DNA damage was demonstrated, highlighting the potential human health risk. Among the studied THMs, chloroform presented a different action mechanism when compared with brominated THMs, with the former being cytotoxic while brominated THMs (bromodichloromethane, bromoform, and dibromochloromethane) were cytotoxic, genotoxic, and mutagenic. The described evidence in this research highlights the relevance of this topic as a human health issue. Nevertheless, research aimed to represent THMs current exposure conditions in a more accurate way would be needed to understand the real impact on human health.
Показать больше [+] Меньше [-]Nanoanalytics: history, concepts, and specificities
2019
Faucher, Stéphane | Le Coustumer, Philippe | Lespes, Gaëtane
This article deals with analytical chemistry devoted to nano-objects. A short review presents nano-objects, their singularity in relation to their dimensions, genesis, and possible transformations. The term nano-object is then explained. Nano-object characterization activities are considered and a definition of nanoanalytics is proposed. Parameters and properties for describing nano-objects on an individual scale and on the scale of a population are also presented. They enable the specificities of analytical activities to be highlighted in terms of multi-criteria description strategies and observation scale. Special attention is given to analytical methods, their dimensioning and validation.
Показать больше [+] Меньше [-]Backward and forward multilevel indicators for identifying key sectors of China’s intersectoral CO2 transfer network
2019
Wei, Liyuan | Wang, Zhen | Zhang, Xiaoling
Many countries face a dilemma of economic growth and carbon emission mitigation, which is highly associated with energy consumption. In order to initiate effective policies for controlling carbon emissions, it is important to identify the key sectors in the value chain, thus proposing corresponding measures. To date, however, energy and carbon emissions have been studied mainly from a production or consumption perspective, with important interactions between sectors being seldom considered. In response, a new CO₂ flow model is presented in which input-output analysis and network theory are combined with multilevel indicators to identify the key sectors affecting carbon emissions in terms of total, immediate, and mediative centrality effects. The model is demonstrated with an analysis of 2007 and 2012 China sectoral data, showing that Production & Supply of Electric Power, Steam and Hot Water (PESH), Nonmetal Mineral Products (NMMP), and Coal Mining & Dressing (CMDG) played key roles in China’s carbon transfer network; the roles of Electronic & Telecommunications Equipment (ETET), Instruments & Office Machinery (IOMY), and Electric Equipment & Machinery (EEMY) had the largest immediacy effect; and, acting as key transmission sectors, PESH, Smelting & Pressing of Metals (SPOM), and NMMP controlled a large share of CO₂ transfer. The measures used are closely related to, and provide new insights into, the traditional indicators of sector centrality. At the same time, the proposed multilevel indicators are supplements for techniques that aim to instruct sector-level carbon mitigation policies.
Показать больше [+] Меньше [-]Continuous degradation of Direct Red 23 by calcium pectate–bound Ziziphus mauritiana peroxidase: identification of metabolites and degradation routes
2019
Khan, Nida | Husain, Qayyum
In the present study, oxido-reductive degradation of diazo dye, Direct Red 23, has been carried out by Ziziphus mauritiana peroxidases (specific activity 17.6 U mg⁻¹). Peroxidases have been immobilized via simple adsorption and cross-linking by glutaraldehyde; adsorbed and cross-linked enzyme retained 94.28% and 91.23% of original activity, respectively. The stability of peroxidases was enhanced significantly upon immobilization; a marked widening in both pH and temperature activity profiles were observed. Adsorbed peroxidases exhibited similar pH and temperature optima as reported for the free enzyme. Thermal stability was significantly enhanced in case of cross-linked enzyme which showed 80.52% activity even after 2 h of incubation at 60 °C. Packed bed reactors containing adsorbed and cross-linked peroxidases were run over a period of 4 weeks; adsorbed peroxidases retained 52.86% activity whereas cross-linked peroxidases maintained over 77% dye decolorization ability at the end of the fourth week of its continuous operation. Gas chromatography coupled with mass spectrometry was used to analyze the degradation products; it showed the presence of four major metabolites. Degradation of dye starts with the 1-Hydroxybenzotriazole radical attack on the carbon atom of the phenolic ring bearing azo linkage, converting it into cation radical which underwent nucleophilic attack by a water molecule and results in cleavage of chromophore via symmetric and asymmetric cleavage pathways. Intermediates undergo spontaneous removal of nitrogen, deamination, and oxidation reactions to produce maleic acid as the final degradation product. Graphical abstract
Показать больше [+] Меньше [-]Ball-milled biochar for alternative carbon electrode
2019
Lyu, Honghong | Yu, Zebin | Gao, Bin | He, Feng | Huang, Jun | Tang, Jingchun | Shen, Boxiong
Ball-milled biochars (BM-biochars) were produced through ball milling of pristine biochars derived from different biomass at three pyrolysis temperatures (300, 450, and 600 °C). The results of scanning electron microscopic (SEM), surface area, hydrodynamic diameter test, and Fourier transform infrared spectroscopy (FTIR) revealed that BM-biochars had smaller particle size (140–250 nm compared to 0.5–1 mm for unmilled biochar), greater stability, and more oxygen-containing functional groups (2.2–4.4 mmol/g compared to 0.8–2.9 for unmilled biochar) than the pristine biochars. With these changes, all the BM-biochar-modified glassy carbon electrodes (BM-biochar/GCEs) exhibited prominent electrochemical properties (e.g., ΔEₚ of 119–254 mV compared to 850 mV for bare GCE). Cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) show that ball-milled 600 °C biochar/GCE (BMBB600/GCE and BMBG600/GCE) had the smallest peak-to-peak separation (ΔEₚ = 119 and 132 mV, respectively), series resistance (RS = 88.7 and 89.5 Ω, respectively), and charge transfer resistance (RCT = 1224 and 1382 Ω, respectively), implying its best electrocatalytic activity for the reduction of Fe(CN)₆³⁻. It is supposed that the special structure (i.e., internal surface area, pore volume, oxygen-containing functional groups, and graphitic structure) facilitates the electron transfer and reduces interface resistance. Economic cost of BM-biochar/GCE was 1.97 × 10⁻⁷ USD/cm², much lower than that of a “low-cost platinum electrode” (0.03 USD/cm²). The results indicate potential application of the novel BM-biochar for low cost and high efficient electrodes. Graphical abstract
Показать больше [+] Меньше [-]The protective efficacy of soursop fruit extract against hepatic injury associated with acetaminophen exposure is mediated through antioxidant, anti-inflammatory, and anti-apoptotic activities
2019
Al-Brakati, Ashraf Y. | Fouda, Manar S. | Tharwat, Ahmed M. | Elmahallawy, Ehab Kotb | Kassab, Rami B. | Abdel Moneim, Ahmed E.
In the current report, we examined the potential beneficial role of soursop fruit extract (SSFE) on liver injury induced by a single paracetamol (APAP) overdose (2000 mg/kg). Thirty-five Wistar albino rats were randomly divided into five groups as follows: control, SSFE, APAP, SSFE+APAP, and silymarin (SIL)+APAP. APAP intoxication was found to elevate alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and total bilirubin levels. Moreover, it increased the levels of malondialdehyde, nitrites, and nitrates and depleted glutathione, superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase. APAP intoxication inactivated the nuclear factor erythroid 2-related factor 2 (Nrf2) defense pathway and upregulated the expression of heme oxygenase-1 (HO-1). APAP administration enhanced the activation of nuclear factor-kappa B (NF-κB), the elevation of tumor necrosis factor-alpha and interleukin 1-beta levels, and the upregulation of inducible nitric oxide synthase mRNA expression. In addition, APAP activated the overexpression of Bax protein, increased release of cytochrome c, and the downregulation of Bcl-2 protein. Finally, APAP-induced overexpression of transforming growth factor-beta (TGF-β) further suggested enhanced liver damage. On the other hand, SSFE pretreatment attenuated these biochemical, molecular, and histopathological alterations in the liver, which might be partially due to the regulation of hepatic Nrf2/HO-1 and downregulation of NF-κB and TGF-β.
Показать больше [+] Меньше [-]Protective effect of Moringa oleifera leaves ethanolic extract against thioacetamide-induced hepatotoxicity in rats via modulation of cellular antioxidant, apoptotic and inflammatory markers
2019
Mousa, Ahmed Abdelmoniem | El-Gansh, Hala Ali Ibrahim | Eldaim, Mabrouk Attia Abd | Mohamed, Mostafa Abd El-Gaber | Morsi, Azza Hassan | El Sabagh, Hesham Saad
The current study was conducted to evaluate the ameliorative and protective potentials of Moringea oleifera leaves ethanolic extract (MOLE) against thioacetamide (TAA) toxicity. A total of 58 male albino rats were randomly assigned into six experimental groups. G1, rats received distilled water. G2, rats were injected with a single dose of TAA (200 mg/kg BW) i.p. G3, rats were given MOLE (300 mg/kg BW) orally for 26 days. G4, rats were injected TAA as in G2 and treated with MOLE as G3. G5, rats were kept for 26 days without treatment then on day 27 injected with TAA as in G2. G6, rats were given MOLE for 26 days then on day 27 injected with TAA. Phytochemical analysis of MOLE indicated the presence of kaempferol, kaempferol malonylglucoside, kaempferol hexoside, kaempferol -3-O-glucoside, kaempferol-3-O-acetyl-glucoside, cyanidin -3-O-hexoside, ellagic acid, quercetin, quercetin-3-O-glucoside, and apigenin glucoside. Intoxication of rats with TAA significantly elevated activities of serum AST, ALT, and ALP; concentrations of malondialdehyde, nitric oxide, and hepatic tissue protein expression of caspase 3 and COX2 with alteration of the histological structures of hepatic tissues, while it decreased serum levels of total protein, albumin, and hepatic tissue contents of reduced glutathione. Also, TAA intoxication resulted in 62.5% mortality in rats of G5. Treatment of TAA intoxicated rats (G4) with MOLE ameliorated the toxic effects of TAA on hepatic tissue structure and function. It decreased serum activities of AST, ALT, and ALP; enhanced hepatic GSH concentration; reduced pathological alterations and lipid peroxidation; and downregulated caspase 3 and COX2 proteins expression in hepatic tissue. In addition, MOLE protected rats of G6 from TAA-induced hepatic tissues injury and dysfunction, and increased survival rate of rats. In conclusion, MOLE had both ameliorating and protecting potentials against TAA-induced rats liver damage through regulation of antioxidant, anti-apoptotic, and inflammatory biomarkers. Graphical abstract
Показать больше [+] Меньше [-]How does urbanization affect carbon emission intensity under a hierarchical nesting structure? Empirical research on the China Yangtze River Delta urban agglomeration
2019
Wang, Feng | Wang, Ge | Liu, Juan | Chen, Hongtao
Urbanization is an important direction for China’s future social development and an important focus of its carbon emission reduction path. China’s current administrative management is a vertical nested structure, and the characteristics of high-scale regions have a non-negligible impact on low-scale areas. Taking the county scale of the basic unit of economic and social development as the research scale, according to the panel data of the Yangtze River Delta from 2008 to 2016, a two-level hierarchical linear model (HLM) for carbon emission intensity is constructed, especially considering the characteristics of high-scale regions (i.e., low-carbon pilot cities) at the second level, and is combined with the mediating effect test method to analyze the impact path of urban development on carbon emissions intensity. The results show that (1) there is a spatial nesting relationship between regions of different scales, and the city scale can explain 85.21% of the carbon emissions intensity, which is much higher than the county scale. (2) There is an N-shaped curve relationship between urban development and carbon emissions intensity. After considering the high-scale factor (low-carbon pilot cities) at the city scale (the second level of the HLM), if a high-scale city is a low-carbon pilot city, then improvement in the level of urbanization in the county can promote a reduction in carbon intensity. (3) The impact path of urban development ⇄ per capita gross domestic product (the proportion of secondary industry, patent application volume) → carbon emissions intensity and urban development → the proportion of tertiary industry → carbon emissions intensity is significant. However, the path of the proportion of tertiary industry → urban development → carbon emissions intensity is not significant.
Показать больше [+] Меньше [-]