Уточнить поиск
Результаты 451-460 из 4,043
Interplay of metals and bromine with dioxin-related compounds concentrated in e-waste open burning soil from Agbogbloshie in Accra, Ghana Полный текст
2016
Fujimori, Takashi | Itai, Takaaki | Goto, Akitoshi | Asante, Kwadwo A. | Otsuka, Masanari | Takahashi, Shin | Tanabe, Shinsuke
Open burning of electronic waste (e-waste) releases various metals and organohalogen compounds in the environment. Here we investigated the interplay of metals (Cu, Pb, Zn, Fe, Co, and Sr) and bromine (Br) in the formation of dioxin-related compounds (DRCs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs), as well as non-regulated DRCs such as polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and their monobrominated PCDD/Fs in soils sampled from open burning e-waste sites at Agbogbloshie in Accra, Ghana. The predominant DRCs were PBDFs, PCDFs, PCDDs, and DL-PCBs. Statistical analyzes, X-ray absorption spectroscopy, and the PCDF/PCDD ratio suggested possible formation paths of PCDD/Fs and DL-PCBs by catalytic behaviors of copper chlorides (CuCl, CuCl2, and Cu2(OH)3Cl) and thermal breakdown of polyvinyl chloride. Predominant formation of brominated furans may be derived from electron transfer from intermediates of PBDE to copper, Cu(II) → Cu(I). Lead chloride also contributed to generate DRCs and may become highly bioaccessible through the open burning of e-waste. The main zinc species (ZnCl2 and ZnS) suggested a possible relationship to generate DRCs and specific zinc source such as tire burning. Cu, Pb, Zn, and Br contained in various e-wastes, wires/cables, plastics, and tires strongly influenced generation of many DRCs.
Показать больше [+] Меньше [-]Assessment of indoor and outdoor PM species at schools and residences in a high-altitude Ecuadorian urban center Полный текст
2016
Raysoni, Amit U. | Armijos, Rodrigo X. | Weigel, M Margaret | Montoya, Teresa | Eschanique, Patricia | Racines, Marcia | Li, Wen-Whai
An air monitoring campaign to assess children's environmental exposures in schools and residences, both indoors and outdoors, was conducted in 2010 in three low-income neighborhoods in Z1 (north), Z2 (central), and Z3 (southeast) zones of Quito, Ecuador – a major urban center of 2.2 million inhabitants situated 2850 m above sea level in a narrow mountainous basin. Z1 zone, located in northern Quito, historically experienced emissions from quarries and moderate traffic. Z2 zone was influenced by heavy traffic in contrast to Z3 zone which experienced low traffic densities. Weekly averages of PM samples were collected at schools (one in each zone) and residences (Z1 = 47, Z2 = 45, and Z3 = 41) every month, over a twelve-month period at the three zones. Indoor PM2.5 concentrations ranged from 10.6 ± 4.9 μg/m3 (Z1 school) to 29.0 ± 30.5 μg/m3 (Z1 residences) and outdoor PM2.5 concentrations varied from 10.9 ± 3.2 μg/m3 (Z1 school) to 14.3 ± 10.1 μg/m3 (Z2 residences), across the three zones. The lowest values for PM10–2.5 for indoor and outdoor microenvironments were recorded at Z2 school, 5.7 ± 2.8 μg/m3 and 7.9 ± 2.2 μg/m3, respectively. Outdoor school PM concentrations exhibited stronger associations with corresponding indoor values making them robust proxies for indoor exposures in naturally ventilated Quito public schools. Correlation analysis between the school and residential PM size fractions and the various pollutant and meteorological parameters from central ambient monitoring (CAM) sites suggested varying degrees of temporal relationship. Strong positive correlation was observed for outdoor PM2.5 at Z2 school and its corresponding CAM site (r = 0.77) suggesting common traffic related emissions. Spatial heterogeneity in PM2.5 concentrations between CAM network and sampled sites was assessed using Coefficient of Divergence (COD) analysis. COD values were lower when CAM sites were paired with outdoor measurements (<0.2) and higher when CAM and indoor values were compared (>0.2), suggesting that CAM network in Quito may not represent actual indoor exposures.
Показать больше [+] Меньше [-]Increase in ozone due to the use of biodiesel fuel rather than diesel fuel Полный текст
2016
Thang, Phan Quang | Muto, Yusuke | Maeda, Yasuaki | Trung, Nguyen Quang | Itano, Yasuyuki | Takenaka, Norimichi
The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm3 of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm3 of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG.
Показать больше [+] Меньше [-]Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China Полный текст
2016
Wang, Qing | Liu, Min | Yu, Yingpeng | Li, Ye
Polycyclic aromatic hydrocarbons (PAHs) were studied in 230 daily fine particulate matter (PM2.5) samples collected in four seasons at urban and suburban sites of Shanghai, China. This study focused on the emission sources of PAHs and its dynamic results under different weather conditions and pollution levels and also emphasized on the spatial sources of PM2.5 and PAHs at a regional level. Annual concentrations of PM2.5 and 16 EPA priority PAHs were 53 μg/m3 and 6.9 ng/m3, respectively, with highest levels in winter. Positive matrix factorization (PMF) modeling identified four sources of PAHs: coal combustion, traffic, volatilization and biomass combustion, and coking, with contributions of 34.9%, 27.5%, 21.1% and 16.5%, respectively. The contribution of traffic, a local-indicative source, increased from 17.4% to 28.7% when wind speed changed from >2m/s to <2m/s, and increased from 18.3% to 31.3% when daily PAH concentrations changed from below to above the annual mean values. This indicated that local sources may have larger contributions under stagnant weather when poorer dispersion conditions and lower wind speed led to the accumulation of local-emitted pollutants. The trajectory clustering and potential source contribution function (PSCF) and concentration weighted trajectory (CWT) models showed clearly that air parcels moved from west had highest concentrations of PM2.5, total PAHs and high molecular weight (HMW) PAHs. While small differences were found among all five clusters in low molecular weight (LMW) PAHs. Sector analyses determined that regional transport source contributed 39.8% to annual PM2.5 and 52.5% to PAHs, mainly from western regions and varying with seasons. This work may make contribution to a better understanding and control of the increasingly severe air pollution in China as well as other developing Asian countries.
Показать больше [+] Меньше [-]Hazardous or not – Are adult and juvenile individuals of Potamopyrgus antipodarum affected by non-buoyant microplastic particles? Полный текст
2016
Imhof, Hannes K. | Laforsch, Christian
Microplastic has been ubiquitously detected in freshwater ecosystems. A variety of freshwater organisms were shown to ingest microplastic particles, while a high potential for adverse effects are expected. However, studies addressing the effect of microplastic in freshwater species are still scarce compared to studies on marine organisms. In order to gain further insights into possible adverse effects of microplastic particles on freshwater invertebrates and to set the base for further experiments we exposed the mud snail (Potampoyrgus antipodarum) to a large range of common and environmentally relevant non-buoyant polymers (polyamide, polyethylene terephthalate, polycarbonate, polystyrene, polyvinylchloride). The impact of these polymers was tested by performing two exposure experiments with irregular shaped microplastic particles with a broad size distribution in a low (30%) and a high microplastic dose (70%) in the food.First, possible effects on adult P. antipodarum were assessed by morphological and life-history parameters. Second, the effect of the same mixture on the development of juvenile P. antipodarum until maturity was analyzed.Adult P. antipodarum showed no morphological changes after the exposure to the microplastic particles, even if supplied in a high dose. Moreover, although P. antipodarum is an established model organism and reacts especially sensitive to endocrine active substances no effects on embryogenesis were detected. Similarly, the juvenile development until maturity was not affected.Considering, that most studies showing effects on marine and freshwater invertebrates mostly exposed their experimental organisms to very small (≤20 μm) polystyrene microbeads, we anticipate that these effects may be highly dependent on the chemical composition of the polymer itself and the size and shape of the particles. Therefore, more studies are necessary to enable the identification of harmful synthetic polymers as some of them may be problematic and should be declared as hazardous whereas others may have relatively moderate or no effects.
Показать больше [+] Меньше [-]Joint effects of trihalomethanes and trichloroacetic acid on semen quality: A population-based cross-sectional study in China Полный текст
2016
Zeng, Qiang | Zhou, Bin | He, Dong-Liang | Wang, Yi-Xin | Wang, Mu | Yang, Pan | Huang, Zhen | Li, Jin | Lu, Wen-Qing
Exposure to trihalomethanes (THMs) and haloacetic acids (HAAs) has been individually associated with adverse male reproductive effects; however, their joint male reproductive toxicity is largely unknown. This study aimed to explore the joint effects of THMs and trichloroacetic acid (TCAA) on semen quality in a Chinese population. A total of 337 men presenting to the Reproductive Center of Tongjing Hospital, in Wuhan, China to seek semen analysis were included this study. Baseline blood THMs [chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and urinary TCAA were analyzed and dichotomized at their median levels. The joint effects of THMs and TCAA on below-reference semen quality parameters were evaluated by calculating the relative excess risk due to interaction (RERI). After adjusting for potential confounders, we found a suggestive synergistic effect between Br-THMs (sum of BDCM, DBCM, and TBM) and TCAA for below-reference sperm count (RERI = 2.14, 95% CI: −0.37, 4.91) (P = 0.076); men with high Br-THMs and TCAA levels (above the median) had 3.31 times (95% CI: 1.21, 9.07) elevated risk of having below-reference sperm count than men with low Br-THMs and TCAA levels (below the median). No apparent joint effects were observed between THMs and TCAA for other semen quality parameters. Our results suggest that co-exposure to Br-THMs and TCAA is associated with additive effects on decreased semen quality. However, further studies in a larger sample size and mechanistic studies are needed to confirm the findings.
Показать больше [+] Меньше [-]Measurements of major VOCs released into the closed cabin environment of different automobiles under various engine and ventilation scenarios Полный текст
2016
Kim, Ki Hyun | Szulejko, Jan E. | Jo, Hyo-Jae | Lee, Min-Hee | Kim, Yong-Hyun | Kwon, Eilhann | Ma, Chang-Jin | Kumar, Pawan
Volatile organic compounds (VOCs) in automobile cabins were measured quantitatively to describe their emission characteristics in relation to various idling scenarios using three used automobiles (compact, intermediate sedan, and large sedan) under three different idling conditions ([1] cold engine off and ventilation off, [2] exterior air ventilation with idling warm engine, and [3] internal air recirculation with idling warm engine). The ambient air outside the vehicle was also analyzed as a reference. A total of 24 VOCs (with six functional groups) were selected as target compounds. Accordingly, the concentration of 24 VOC quantified as key target compounds averaged 4.58 ± 3.62 ppb (range: 0.05 (isobutyl alcohol) ∼ 38.2 ppb (formaldehyde)). Moreover, if their concentrations are compared between different automobile operational modes: the ‘idling engine’ levels (5.24 ± 4.07) was 1.3–5 times higher than the ‘engine off’ levels (4.09 ± 3.23) across all 3 automobile classes. In summary, automobile in-cabin VOC emissions are highly contingent on changes in engine and ventilation modes.
Показать больше [+] Меньше [-]On the use of numerical modelling for near-field pollutant dispersion in urban environments − A review Полный текст
2016
Lateb, M. | Meroney, R.N. | Yataghene, M. | Fellouah, H. | Saleh, F. | Boufadel, M.C.
This article deals with the state-of-the-art of experimental and numerical studies carried out regarding air pollutant dispersion in urban environments. Since the simulation of the dispersion field around buildings depends strongly on the correct simulation of the wind-flow structure, the studies performed during the past years on the wind-flow field around buildings are reviewed. This work also identifies errors that can produce poor results when numerically modelling wind flow and dispersion fields around buildings in urban environments. Finally, particular attention is paid to the practical guidelines developed by researchers to establish a common methodology for verification and validation of numerical simulations and/or to assist and support the users for a better implementation of the computational fluid dynamics (CFD) approach.
Показать больше [+] Меньше [-]Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity Полный текст
2016
Gutiérrez, Carmen | Fernández, Carlos | Escuer, Miguel | Campos-Herrera, Raquel | Beltrán Rodríguez, Mª Eulalia | Carbonell, Gregoria | Rodríguez Martín, Jose Antonio
Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity Полный текст
2016
Gutiérrez, Carmen | Fernández, Carlos | Escuer, Miguel | Campos-Herrera, Raquel | Beltrán Rodríguez, Mª Eulalia | Carbonell, Gregoria | Rodríguez Martín, Jose Antonio
Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs.
Показать больше [+] Меньше [-]Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity Полный текст
2016
Gutiérrez, Carmen | Fernández, Carlos | Escuer, Miguel | Campos-Herrera, Raquel | Beltrán Rodríguez, Eulalia María | Carbonell, G. | Rodríguez Martín, José Antonio
Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs. © 2016 Elsevier Ltd. All rights reserved.
Показать больше [+] Меньше [-]Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry Полный текст
2016
Mousset, Emmanuel | Huguenot, David | van Hullebusch, Eric D. | Oturan, Nihal | Guibaud, Gilles | Esposito, Giovanni | Oturan, Mehmet A.
The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween® 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween® 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R² > 0.975). More HPCD was recovered (89%) than Tween® 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween® 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (pH approximately 3) of the partially oxidized solution inhibited the general soil microbial activity during the washing cycle.
Показать больше [+] Меньше [-]