Уточнить поиск
Результаты 451-460 из 5,149
Microplastic accumulation patterns and transfer of benzo[a]pyrene to adult zebrafish (Danio rerio) gills and zebrafish embryos Полный текст
2018
Batel, Annika | Borchert, Flora | Reinwald, Hannes | Erdinger, Lothar | Braunbeck, T. (Thomas)
Since only a few studies have investigated effects of microplastics (MPs) by routes other than ingestion, this study was designed to analyze the accumulation patterns and transfer of toxic substances associated with microplastic exposure by simple attachment to (1) adult zebrafish (Danio rerio) gills and (2) zebrafish embryos. Two sizes of fluorescently labelled polymers (1–5 and 10–20 μm) loaded with the model polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) were used to analyze fate, accumulation and transfer of microplastic-associated persistent organic pollutants (POPs) on gills and embryos.Results indicate that microplastics did not permanently accumulate at high amounts in adult zebrafish gills after 6 nor 24 h of incubation: Most particles only superficially adhered to the mucus layer on the filaments, which is constantly being excreted. In contrast, the smaller and heavier MPs (1–5 μm) accumulated in high numbers on the surface of zebrafish egg chorions. In both exposure scenarios, transfer of BaP could be visualized with fluorescence microscopy: A prominent BaP signal was visible both in gill filaments and arches after 6 and 24 h incubation and in zebrafish embryos after exposure to BaP-spiked microplastics. Furthermore, the gill EROD (Ethoxyresorufin-O-deethylase) assay showed a clear trend to CYP 1A (Cytochrom P450 1 A) induction via exposure to BaP-spiked microplastics. However, BaP from spiked microplastics did not reach sufficiently high concentrations to be able to induce morphological effects in the fish embryo toxicity test (FET). In contrast, control exposure to waterborne BaP did induce effects in the FET.As a conclusion, microplastics can also transfer POPs not only via ingestion, but also by simple attachment to epithelia or via the water column. However, further studies are needed to clarify if these interactions are of environmental concern relative to waterborne exposure to toxic substances.
Показать больше [+] Меньше [-]Optimizing critical source control of five priority-regulatory trace elements from industrial wastewater in China: Implications for health management Полный текст
2018
Wu, Wenjun | Wang, Jinnan | Yu, Yang | Jiang, Hongqiang | Liu, Nianlei | Bi, Jun | Liu, Miaomiao
Anthropogenic emissions of toxic trace elements (TEs) have caused worldwide concern due to their adverse effects on human health and ecosystems. Based on a stochastic simulation of factors' probability distribution, we established a bottom-up model to estimate the amounts of five priority-regulatory TEs released to aquatic environments from industrial processes in China. Total TE emissions in China in 2010 were estimated at approximately 2.27 t of Hg, 310.09 t of As, 318.17 t of Pb, 79.72 t of Cd, and 1040.32 t of Cr. Raw chemicals, smelting, and mining were the leading sources of TE emissions. There are apparent regional differences in TE pollution. TE emissions are much higher in eastern and central China than in the western provinces and are higher in the south than in the north. This spatial distribution was characterized in detail by allocating the emissions to 10 km × 10 km grid cells. Furthermore, the risk control for the overall emission grid was optimized according to each cell's emission and risk rank. The results show that to control 80% of TE emissions from major sources, the number of top-priority control cells would be between 200 and 400, and less than 10% of the total population would be positively affected. Based on TE risk rankings, decreasing the population weighted risk would increase the number of controlled cells by a factor of 0.3–0.5, but the affected population would increase by a factor of 0.8–1.5. In this case, the adverse effects on people's health would be reduced significantly. Finally, an optimized strategy to control TE emissions is proposed in terms of a cost-benefit trade-off. The estimates in this paper can be used to help establish a regional TE inventory and cyclic simulation, and it can also play supporting roles in minimizing TE health risks and maximizing resilience.
Показать больше [+] Меньше [-]Blood and urine cadmium concentrations and walking speed in middle-aged and older U.S. adults Полный текст
2018
Kim, Junghoon | Garcia-Esquinas, Esther | Navas-Acien, Ana | Choi, Yoon-Hyeong
Reduced physical performance is an important feature of aging, and walking speed is a valid measure of physical performance and mobility in older adults. Previous epidemiological studies suggest that cadmium exposure, even at low environmental levels, may contribute to vascular, musculoskeletal, and cognitive dysfunction, which may all be associated with reductions in physical performance. To this end, we investigated the associations of blood and urine cadmium concentrations with walking speed in middle-aged and older adults in the U.S. general population. We studied U.S. adults from the National Health and Nutrition Examination Survey 1999 to 2002 who were ≥50 years of age, who had determinations of cadmium in blood or in urine, and who had measurements of the time taken to walk 20 feet. Walking speed (ft/sec) was computed as walked distance (20 ft) divided by measured time to walk (in seconds). The weighted geometric means of blood and urine cadmium were 0.49 [95% confidence interval (CI): 0.47, 0.52] μg/L and 0.37 (95% CI: 0.34, 0.42) ng/mL, respectively. After adjusting for sociodemographic, anthropometric, health-related behavioral, and clinical risk factors and inflammation markers, the highest (vs. lowest) quintile of blood cadmium was associated with a 0.18 (95% CI: 0.10, 0.25) ft/sec reduction in walking speed (p-Trend <0.001). No association was observed for urine cadmium levels with walking speed. Cadmium concentrations in blood, but not in urine, were associated with slower gait speed. Our findings add to the growing volume of evidence supporting cadmium's toxicity even at low levels of exposure.
Показать больше [+] Меньше [-]An optimized method for the analysis of cyclic and linear siloxanes and their distribution in surface and core sediments from industrialized bays in Korea Полный текст
2018
Lee, Sang Yoon | Lee, Sunggyu | Choi, Minkyu | Kannan, Kurunthachalam | Moon, Hyo-Bang
Environmental contamination by siloxanes is a matter of concern due to their widespread consumption in personal care as well as industrial products and potential toxicity. Nevertheless, methods for simultaneous determination of cyclic and linear siloxanes in sediment are lacking. In this study, we developed an optimized analytical method to determine cyclic and linear siloxanes based on gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). This method was applied to determine concentrations of 19 siloxane compounds in surface and core sediments from industrialized bays in Korea to assess contamination status, spatial distribution, and historical trends. Total concentrations of siloxanes ranged from 15.0 to 11730 (mean: 712) ng/g dry weight, which were similar to or higher than those reported in other countries. The highest concentrations of siloxanes were found in rivers/streams that discharge into coastal waters and bays close to industrial complexes, indicating that industrial activities are major sources of siloxane contamination. Cyclic siloxanes such as D5 and D6 were predominant in surface and core sediments. A significant correlation existed between the concentrations of cyclic and linear siloxanes, suggesting similar sources in the marine coastal environment. The historical record of cyclic siloxanes in core sediments revealed a clear increasing trend since the 1970s. This finding is consistent with the history of local industrialization and global production of siloxanes. This is the first study of historical trends in siloxanes in the coastal environment.
Показать больше [+] Меньше [-]Assessment of trace metals in five most-consumed vegetables in the US: Conventional vs. organic Полный текст
2018
Hadayat, Naila | De Oliveira, Letuzia M. | Da Silva, Evandro | Han, Lingyue | Hussain, Mumtaz | Liu, Xue | Ma, Lena Q.
Metal concentrations (As, Cd, Pb, Cr, Ba, Co, Ni, Cu, and Zn) in conventional and organic produce were assessed, specifically, five most-consumed vegetables from the US including potato, lettuce, tomato, carrot and onion. They were from four representative supermarkets in a college town in Florida. All vegetables contained detectable metals, while As, Cd, Pb, Cr, and Ba are toxic metals, Co, Ni, Cu, and Zn are nutrients for humans. The mean concentrations of As, Cd, Pb, Cr and Ba in five vegetables were 7.86, 9.17, 12.1, 44.8 and 410 μg/kg for organic produce, slightly lower than conventional produce at 7.29, 15.3, 17.9, 46.3 and 423 μg/kg. The mean concentrations of Co, Ni, Cu, and Zn in five vegetables were 3.86, 58.5, 632, and 2528 μg/kg for organic produce, comparable to conventional produce at 5.94, 68.2, 577, and 2354 μg/kg. For toxic metals, the order followed tomato < lettuce < onion < carrot < potato, with root vegetables being the highest. All metals in vegetables were lower than the allowable concentrations by FAO/WHO. Health risks associated with vegetable consumption based on daily intake and non-carcinogenic risk based on hazard quotient were lower than allowable limits. For the five most-consumed vegetables in the US, metal contents in conventional produce were slightly greater than organic produce, especially for Cd and Pb.
Показать больше [+] Меньше [-]Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China Полный текст
2018
Tang, Quan | Sheng, Wanqi | Li, Liyuan | Zheng, Liugen | Miao, Chunhui | Sun, Ruoyu
The alteration behavior of minerals and hazardous elements during simulated combustion (100–1200 °C) of a raw coal collected from a power plant were studied. Thermogravimetric analysis indicated that there were mainly four alteration stages during coal combustion. The transformation behavior of mineral phases of raw coal, which were detected by X-ray polycrystalline diffraction (XRD) technique, mainly relied on the combustion temperature. A series of changes were derived from the intensities of mineral (e.g. clays) diffraction peaks when temperature surpassed 600 °C. Mineral phases tended to be simple and collapsed to amorphous glass when temperature reached up to 1200 °C. The characteristics of functional groups for raw coal and high-temperature (1200 °C) ash studied by Fourier transform infrared spectroscopy (FTIR) were in accordance with the result obtained from XRD analysis. The volatilization ratios of Co, Cr, Ni and V increased consistently with the increase of combustion temperature, suggesting these elements were gradually released from the organic matter and inorganic minerals of coal.
Показать больше [+] Меньше [-]Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information Полный текст
2018
Chen, Gongbo | Knibbs, Luke D. | Zhang, Wenyi | Li, Shanshan | Cao, Wei | Guo, Jianping | Ren, Hongyan | Wang, Boguang | Wang, Hao | Williams, Gail | Hamm, N.A.S. | Guo, Yuming
PM₁ might be more hazardous than PM₂.₅ (particulate matter with an aerodynamic diameter ≤ 1 μm and ≤2.5 μm, respectively). However, studies on PM₁ concentrations and its health effects are limited due to a lack of PM₁ monitoring data.To estimate spatial and temporal variations of PM₁ concentrations in China during 2005–2014 using satellite remote sensing, meteorology, and land use information.Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM₁ data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability.The results of 10-fold cross-validation showed R² and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 μg/m³, respectively. For seasonal prediction, the R² and RMSE were 77% and 11.4 μg/m³, respectively. The predicted annual mean concentration of PM₁ across China was 26.9 μg/m³. The PM₁ level was highest in winter while lowest in summer. Generally, the PM₁ levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM₁ levels increased substantially in the South-Western Hebei and Beijing-Tianjin region.GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-level PM₁. Ambient PM₁ reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM₁.
Показать больше [+] Меньше [-]Impact of water chemistry on the behavior and fate of copper nanoparticles Полный текст
2018
Xiao, Yinlong | Vijver, Martina G. | Peijnenburg, Willie J.G.M.
A full-factorial test design was applied to systematically investigate the contribution and significance of water chemistry parameters (pH, divalent cations and dissolved organic carbon (DOC) concentration) and their interactions on the behavior and fate of copper nanoparticles (CuNPs). The total amount of Cu remaining in the water column after 48 h of incubation was mostly influenced by divalent cation content, DOC concentration and the interaction of divalent cations and DOC. DOC concentration was the predominant factor influencing the dissolution of CuNPs, which was far more important than the effect of pH in the range from 6 to 9 on the dissolution of the CuNPs. The addition of DOC at concentrations ranging from 5 to 50 mg C/L resulted in a 3–5 fold reduction of dissolution of CuNPs after 48 h of incubation, as compared to the case without addition of DOC. Divalent cation content was found to be the most influential factor regarding aggregation behavior of the particles, followed by DOC concentration and the interaction of divalent cations and DOC. In addition, the aggregation behavior of CuNPs rather than particulate dissolution explained most of the variance in the sedimentation profiles of CuNPs. These results are meaningful for improved understanding and prediction of the behavior and fate of metallic NPs in aqueous environments.
Показать больше [+] Меньше [-]Airborne microplastics: Consequences to human health? Полный текст
2018
Prata, Joana Correia
Microplastics have recently been detected in atmospheric fallout in Greater Paris. Due to their small size, they can be inhaled and may induce lesions in the respiratory system dependent on individual susceptibility and particle properties. Even though airborne microplastics are a new topic, several observational studies have reported the inhalation of plastic fibers and particles, especially in exposed workers, often coursing with dyspnea caused by airway and interstitial inflammatory responses. Even though environmental concentrations are low, susceptible individuals may be at risk of developing similar lesions. To better understand airborne microplastics risk to human health, this work summarizes current knowledge with the intention of developing awareness and future research in this area.
Показать больше [+] Меньше [-]Baseline characterisation of source contributions to daily-integrated PM2.5 observations at Cape Grim using Radon-222 Полный текст
2018
Crawford, Jagoda | Chambers, Scott D. | Cohen, David D. | Williams, Alastair G. | Atanacio, Armand
We discuss 15 years (2000–2015) of daily-integrated PM₂.₅ samples from the Cape Grim Station. Ion beam analysis and positive matrix factorisation are used to identify six source-type fingerprints: fresh sea salt (57%); secondary sulfate (14%); smoke (13%); aged sea salt (12%); soil dust (2.4%); and industrial metals (1.5%). An existing hourly radon-only baseline selection technique is modified for use with the daily-integrated observations. Results were not significantly different for days on which >20 hours were below the baseline radon threshold compared with days when all 24 hours satisfied the baseline criteria. This relaxed daily baseline criteria increased the number of samples for analysis by almost a factor of two. Two radon baseline thresholds were tested: historic (100 mBq m⁻³), and revised (50 mBq m⁻³). Median aerosol concentrations were similar for both radon thresholds, but maximum values were higher for the 100 mBq m⁻³ threshold. Back trajectories indicated more interaction with southern Australia and the Antarctic coastline for air masses selected with the 100 mBq m⁻³ threshold. Radon-only baseline selection using the 50 mBq m⁻³ threshold was more selective of minimal terrestrial influence than a similar recent study using wind direction and back trajectories. The ratio of concentrations between terrestrial and baseline days for the primary sources soil, smoke and industrial metals was 3.4, 2.6, and 5.5, respectively. Seasonal cycles of soil dust had a summer maximum and winter minimum. Seasonal cycles of smoke were of similar amplitude for terrestrial and baseline events, but of completely different shape: peaking in autumn and spring for terrestrial events, compared to summer for baseline conditions. Seasonal cycles of industrial metals had a summer maximum and winter minimum. A significant fraction of the Cape Grim baseline smoke and industrial metal contributions appeared to be derived from long-term transport (>3 weeks since last terrestrial influence).
Показать больше [+] Меньше [-]