Уточнить поиск
Результаты 451-460 из 8,088
Deoxygenation reduces growth rates and increases assimilation of essential trace metals in gilthead seabream (Sparus aurata) Полный текст
2021
McNicholl, Conall | Oberhaensli, François | Taylor, Angus | Holmerin, Isak | Swarzenski, Peter W. | Metian, Marc
The widespread decline in oceanic dissolved oxygen (DO), known as deoxygenation, is a threat to many marine ecosystems, and fish are considered one of the more vulnerable marine organisms. While food intake and growth rates in some fish can be reduced under hypoxic conditions (DO ~ 60 μmol kg⁻¹), the dietary transfer of essential metals remains unclear. In this context, we investigated the influence of DO on the dietary acquisition of two essential metals (Zn and Mn) in the commercially important gilthead seabream (Sparus aurata) using radiotracer techniques. Fish were exposed to variable DO conditions (normoxia 100% DO, mild-hypoxia 60% DO, and hypoxia 30% DO), and fed a single radiolabeled food ration containing known activities of ⁵⁴Mn and ⁶⁵Zn. Depuration and assimilation mechanisms under these conditions were followed for 19 d. Based on whole body activity after the radio-feeding, food consumption tended to decrease with decreasing oxygen, which likely caused the significantly reduced growth (- 25%) observed at 30% DO after 19 d. While there was an apparent reduction in food consumption with decreasing DO, there was also significantly higher essential metal assimilation with hypoxic conditions. The proportion of ⁶⁵Zn remaining was significantly higher (~60%) at both low DO levels after 24 h and 19 d while ⁵⁴Mn was only significantly higher (27%) at the lowest DO after 19 d, revealing element specific effects. These results suggest that under hypoxic conditions, stressed teleost fish may allocate energy away from growth and towards other strategic processes that involve assimilation of essential metals.
Показать больше [+] Меньше [-]Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison Полный текст
2021
Xu, Miaoqing | Yao, Qi | Chen, Danlu | Li, Manchun | Li, Ruiyuan | Gao, Bingbo | Zhao, Bo | Chen, Ziyue
Ground level ozone exerts a strong impact on crop yields, yet how to properly quantify ozone induced yield losses in China remains challenging. To this end, we employed a series of O₃-crop models to estimate ozone induced yield losses in China from 2014 to 2018. The outputs from all models suggested that the total Relative Yield Losses (RYL) of wheat in China from 2014 to 2018 was 18.4%–49.3% and the total RYL of rice was 6.2%–52.9%. Consequently, the total Crop Production Losses (CPL) of wheat and rice could reach 63.9–130.4 and 28.3–35.4 million tons, and the corresponding Total Economic Losses (TEL) could reach 20.5–44.7 and 11.0–15.3 billion dollars, stressing the great importance and urgency of national ozone management. Meanwhile, the estimation outputs highlighted the large variations between different regional O₃-crop models when applying to large scales.Instead of applying one unified O₃-crop models to all regions across China, we also explored the strategy of employing specific O₃-crop models in corresponding (and neighboring) regions to estimate ozone induced yield loss in China. The comparison of two strategies suggested that the mean value from multiple models may still present an inconsistent over/underestimation trend for different crops. Therefore, it is a preferable strategy to employ corresponding O₃-crop models in different regions for estimating the national crop losses caused by ozone pollution. However, the severe lack of regional O₃-crop models in most regions across China makes a robust estimation of national yield losses highly challenging. Given the large variations between O₃-crop interactions across regions, a systematic framework with massive regional O₃-crop models should be properly designed and implemented.
Показать больше [+] Меньше [-]Fumonisin B1 induced aggressiveness and infection mechanism of Fusarium proliferatum on banana fruit Полный текст
2021
Xie, Lihong | Wu, Yanfei | Wang, Yong | Jiang, Yueming | Yang, Bao | Duan, Xuewu | Li, Taotao
Mycotoxins are increasingly considered as micropollutants in the environment. Fumonisins, as one of the most important mycotoxins, cause potential health threats to humans and animals due to their ubiquitous contamination on cereals, fruit, vegetables and other environmental samples around the world. However, the contribution of fumonisins to the interaction of fungi with plant hosts is not still fully understood. Here, we investigated the effect of fumonisin B1 (FB1) on the infection of Fusarium proliferatum on banana fruit and the underlying mechanisms from the host perspective. Our results found that FB1 treatment increased the aggressiveness of F. proliferatum on banana fruit and inhibited the defense ability of banana fruit via decreasing phenylalanine ammonia lyase (PAL), β-1,3-glucanase (GLU) and chitinase (CHI) activities. Meanwhile, FB1 accelerated cell death, indicated by higher relative conductivity, MDA content and higher transcripts of cell death-related genes. FB1 treatment resulted in higher hydrogen peroxide (H₂O₂) content possibly due to MaRBOHs induction. These consequences accelerated the ROS-dependent cell death, which subsequently result in reduction of disease resistance of banana fruit. Additionally, energy metabolism and MaDORN1s-mediated eATP signaling might involve in FB1-meidiated suppression of banana defense responses. Collectively, results of the current study indicated that FB1 contamination triggered the cell death of banana peel, subsequently instigating the invasion and growth of F. proliferatum on banana fruit. In summary, for the first time, we demonstrated a previously unidentified role of fumonisins as a potential virulence factor of F. proliferatum in modulating fruit defense response, which provides new insight on the biological roles of fumonisins.
Показать больше [+] Меньше [-]Meteorological patterns, technical validation, and chemical comparison of atmospheric dust depositions and bulk sand in the Arabian Gulf region Полный текст
2021
Elsayed, Yehya | Kanan, Sofian | Farhat, Ahmad
This study reports seasonal variations of meteorological parameters, atmospheric dust and dust-borne heavy metals concentrations measured, over a period of two years, next to two major airports (Dubai International Airport and Abu Dhabi International Airport) in the Gulf Cooperation Council (GCC) region. On-line monitoring stations were installed at each location next to dust samplers used to frequently collect PM2.5 and PM10 on Teflon filters for metal analysis. Clear seasonal variation in meteorological parameters were identified. The particulate matter concentrations depicted from the two locations were continuously monitored. The PM2.5 concentration ranged from 50 to 100 μg/m³ on normal days but reached 350–400 μg/m³ per day during mild storms. The PM10 levels ranged between 100 and 250 μg/m³ during normal days and spiked to 750 μg/m³ during mild storms. Energy Dispersive X-Ray Analysis (EDS) revealed the presence of significant amounts of alkali and alkaline earth metals, which pose potential harm to aircraft engines. ICP analysis showed the presence of heavy and toxic metals in concentrations that may pose harm to human health. Bulk sand samples from Abu Dhabi sites showed chemical similarities to the atmospheric dust samples. The concentrations of heavy metals, PM2.5, and PM10 are at levels that require further monitoring due to their impact on human health. The two years meteorological monitoring, with the seasonal variations, provided additional regional data in the Arabian Gulf. Furthermore, the study concluded that Sand and Dust storms (SDS) occur more frequently at the northern Arabian Gulf compared to its southern region. The chemical correlation between atmospheric dust and regional desert sand suggests the localized origin of the smaller dust particles that may form by breaking apart of the ground sand grains. As a result of the ongoing urbanization in the region, it is essential to collect additional data from various locations for a longer period of time.
Показать больше [+] Меньше [-]Short-term variability of bisphenols in spot, morning void and 24-hour urine samples Полный текст
2021
Gys, Celine | Bastiaensen, Michiel | Malarvannan, Govindan | Ait Bamai, Yu | Araki, Atsuko | Covaci, Adrian
Due to worldwide regulations on the application of the high production volume industrial chemical bisphenol A (BPA) in various consumer products, alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) are increasingly used. To assess human exposure to these chemicals, biomonitoring of urinary concentrations is frequently used. However, the short-term variability of alternative bisphenols has not been evaluated thoroughly yet, which is essential to achieve a correct estimation of exposure. In this study, we collected all spot urine samples from ten healthy adults for five consecutive days, and an additional 24 h pooled sample. We measured the concentrations of seven bisphenols (BPAF, BPF, BPA, BPB, BPZ, BPS and BPAP) in these samples using gas chromatography coupled to tandem mass spectrometry. BPA, BPF and BPS were frequently found in spot samples (>80%), while bisphenol AP (BPAP) was detected in 43% of spot samples. Calculations of intra-class correlation coefficients (ICCs) showed that reproducibility of these four bisphenols was relatively poor (<0.01–0.200) but improved when concentrations were corrected for urine dilution using creatinine levels (0.128–0.401). Of these four bisphenols, BPF showed the best reproducibility (ICC 0.200–0.439) and BPS the most variability (ICC <0.01–0.128). In general, the within-participant variability of bisphenol levels was the largest contributor to the total variance (47–100%). We compared repeated first morning voids to 24 h pooled urine and found no significantly different concentrations for BPA, BPF, BPS, or BPAP. Levels of BPA and BPF differed significantly depending on the sampling time throughout the day. The findings in this study suggest that collecting multiple samples per participant over a few days, in predefined time windows throughout the day, could result in a more reliable estimation of internal exposure to bisphenols.
Показать больше [+] Меньше [-]Carbamazepine induces hepatotoxicity in zebrafish by inhibition of the Wnt/β-catenin signaling pathway Полный текст
2021
Bai, Zhonghui | Jia, Kun | Chen, Guilan | Liao, Xinjun | Cao, Zigang | Zhao, Yangqi | Zhang, Chunping | Lu, Huiqiang
As drug abuse has become increasingly serious, carbamazepine (CBZ) is discharged into the aquatic environment with municipal sewage, causing potential harm to aquatic organisms. Here, we utilized zebrafish, an aquatic vertebrate model, to comprehensively evaluate the hepatotoxicity of CBZ. The larvae were exposed to 0.07, 0.13, and 0.26 mmol/L CBZ from 72 hpf to 144 hpf, and the adults were exposed to 0.025, 0.05, and 0.1 mmol/L CBZ for 28 days. The substantial changes were observed in the size and histopathology of livers, indicating that CBZ induced severe hepatoxicity in the larvae and adults. Oil red O staining demonstrated CBZ exposure caused severe lipid accumulation in the livers of both larvae and adults. Furthermore, CBZ exposure facilitated hepatocyte apoptosis through TUNEL staining, which was caused by rising ROS content. Subsequently, down-regulation of genes related to the Wnt pathway in exposure groups indicated that CBZ inhibited the development of liver via the Wnt/β-catenin signaling pathway. In conclusion, CBZ induced severe hepatotoxicity by promoting lipid accumulation, generating excessive ROS production, and inhibiting the Wnt/β-catenin signaling pathway in zebrafish. The results reveal the occurrence of CBZ-induced hepatotoxicity in zebrafish and clarify its mechanism of action, which potentially illustrate environmental concerns associated with CBZ exposure.
Показать больше [+] Меньше [-]Evaluation of stabilizing material and stabilization efficiency through comparative study of toxic heavy metal transfer between corn and peanut grown in stabilized field soil Полный текст
2021
Lee, Yonghyeon | Cui, Mingcan | Son, Younggyu | Ma, Junjun | Han, Zhengchang | Khim, Jeehyeong
Soil contaminated with toxic heavy metals (THMs) was stabilized by adding a combination of waste resources in 7.0 wt%, including coal-mine drainage sludge, waste cow bone, and steelmaking slag, in the ratio of 5:35:60. Subsequently, corn and peanut were cultivated in treated soil to investigate the effects of the waste resources on THM mobility in soil and translocation to plants. Sequential extraction procedures (SEP) was used to analyze mobile phase THMs which could be accumulated in the plants. SEP shows that mobile Pb, Cd, Cu, Zn, Ni, Cr, and As were reduced by 8.48%, 29.22%, 18.85%, 21.66%, 4.58%, 62.78%, and 20.01%, respectively. The bioaccumulation of THMs was clearly hindered by stabilization; however, the increment in the amount of immobile-phase THMs and change in the amount of translocated THMs was not proportional. The corn grains grown above the soil surface were compared with the peanut grains grown beneath the soil surface, and the results indicating that the efficiency of stabilization on THM translocation may not depend on the contact of grain to soil but the nature of plant. Interestingly, the results of bioaccumulation with and without stabilization showed that the movement of some THMs inside the plants was affected by stabilization.
Показать больше [+] Меньше [-]An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme Полный текст
2021
Xu, Youqiang | Liu, Xiao | Zhao, Jingrong | Huang, Huiqin | Wu, Mengqin | Li, Xiuting | Li, Weiwei | Sun, Xiaotao | Sun, Baoguo
Phthalate ester pollution in the environment and food chain is frequently reported. Microbial treatment is a green and efficient method for solving this problem. The isolation and systematic investigation of microorganisms generally recognized as safe (GRAS) will provide useful resources. A GRAS Bacillus subtilis strain, BJQ0005, was isolated from Baijiu fermentation starter and efficiently degraded phthalate esters (PAEs). The half-lives for di-isobutyl phthalate, di-butyl phthalate and di-(2-ethylhexyl) phthalate were 3.93, 4.28, and 25.49 h, respectively, from the initial amount of 10 mg per 10 mL reaction mixture, which are records using wild-type strains. Genome sequencing and metabolic intermediate analysis generated the whole metabolic pathway. Eighteen enzymes from the α/β hydrolase family were expressed. Enzymes GTW28_09400 and GTW28_13725 were capable of single ester bond hydrolysis of PAEs, while GTW28_17760 hydrolyzed di-ester bonds of PAEs. Using molecular docking, a possible mechanism affecting enzymatic ester bond hydrolysis of mono-butyl phthalate was proposed of GTW28_17760. The carboxyl group generated by the first hydrolysis step interacted with histidine in the catalytic active center, which negatively affected enzymatic hydrolysis. Isolation and systematic investigation of the PAE degradation characteristics of B. subtilis will promote the green and safe treatment of PAEs in the environment and food industry.
Показать больше [+] Меньше [-]Measure-specific environmental benefits of air pollution control for coal-fired industrial boilers in China from 2015 to 2017 Полный текст
2021
Wang, Kun | Tong, Yali | Yue, Tao | Gao, Jiajia | Wang, Chenlong | Zuo, Penglai | Liu, Jieyu
From 2015 to 2017, China took strong air pollution control measures (APCMs) for coal-fired industrial boilers (CFIBs), including eliminating CFIBs, promoting clean fuels, and updating air pollution control devices (APCDs). Based on the industrial boiler’s emission inventory of air pollutants, measure-specific emission reductions from 2015 to 2017 was estimated in this study. Besides, the measure-specific environmental benefits of unit emission reduction on concentration and deposition flux were systematically evaluated by WRF-CMAQ model. The total emission reductions for CFIBs of PM₁₀, PM₂.₅, SO₂, NOx, Hg, As, Cd, Cr and Pb from 2015 to 2017 were 1.2 Tg, 0.53 Tg, 2.06 Tg, 0.65 Tg, 37.6 tons, 179.5 tons, 17.9 tons, 1029.3 tons and 676.0 tons, respectively. Based on meteorological fields in 2017, their corresponding national population-weighted mitigated concentration was 1.8 μg m⁻³, 1.3 μg m⁻³, 3.6 μg m⁻³, 0.6 μg m⁻³ (NO₂), 0.076 ng m⁻³, 0.37 ng m⁻³, 0.04 ng m⁻³, 1.83 ng m⁻³ and 2.3 ng m⁻³, respectively. Updating APCDs was identified as the major measure to reduce air pollutants (except NOₓ), accounting for more than 35% of emission reductions and mitigated concentration. Moreover, elimination was the major NOx reduction method, contributing to 55% of NOx emission reductions. The promoting of fuels, including replacement of CFIBs with gas-fired and biomass-fired industrial boilers, had higher environmental benefits for unit emission reductions. Furthermore, there were still more than 43,000 CFIBs with the capacity <10 t h⁻¹, accounting for 14%, 21%, and 11% of total PM₂.₅, SO₂, and NOX emissions for CFIBs in 2017; meanwhile, 20% and 59% of CFIBs did not install flue gas desulfurization and denitrification devices, respectively. Therefore, it is recommended to give priority to phase out CFIBs with capacity <10 t h⁻¹ and APCDs updating for larger capacity CFIBs in the future.
Показать больше [+] Меньше [-]Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis Полный текст
2021
Xu, Ping | Liu, Aiping | Li, Fengna | Tinkov, Alexey A. | Liu, Longjian | Zhou, Ji-Chang
Four most concerned heavy metal pollutants, arsenic, cadmium, lead, and mercury may share common mechanisms to induce metabolic syndrome (MetS). However, recent studies exploring the relationships between MetS and metal exposure presented inconsistent findings. We aimed to clarify the relationship between heavy metal exposure biomarkers and MetS using a meta-analysis and systematic review approach. Literature search was conducted in international and the Chinese national databases up to June 2020. Of selected studies, we extracted the relevant data and evaluated the quality of each study’s methodology. We then calculated the pooled effect sizes (ESs), standardized mean differences (SMDs), and their 95% confidence intervals (CIs) using a random-effect meta-analysis approach followed by stratification analyses for control of potential confounders. Involving 55,536 participants, the included 22 articles covered 52 observational studies reporting ESs and/or metal concentrations on specific metal and gender. Our results show that participants with MetS had significantly higher levels of heavy metal exposure [pooled ES = 1.16, 95% CI: 1.09, 1.23; n = 42, heterogeneity I² = 75.6%; and SMD = 0.22, 95% CI: 0.15, 0.29; n = 32, I² = 94.2%] than those without MetS. Pooled ESs in the subgroups stratified by arsenic, cadmium, lead, and mercury were 1.04 (95% CI: 0.97, 1.10; n = 8, I² = 61.0%), 1.10 (0.95, 1.27; 11, 45.0%), 1.21 (1.00, 1.48; 12, 82.9%), and 1.26 (1.06, 1.48; 11, 67.7%), respectively. Pooled ESs in the subgroups stratified by blood, urine, and the other specimen were 1.22 (95% CI: 1.08, 1.38; n = 26, I² = 75.8%), 1.06 (1.00, 1.13; 14, 58.1%), and 2.41 (1.30, 4.43; 2, 0.0%), respectively. In conclusion, heavy metal exposure was positively associated with MetS. Further studies are warranted to examine the effects of individual metals and their interaction on the relationship between MetS and heavy metals.
Показать больше [+] Меньше [-]