Уточнить поиск
Результаты 501-510 из 6,535
Bioremediation of diesel and gasoline-contaminated soil by co-vermicomposting amended with activated sludge: Diesel and gasoline degradation and kinetics
2020
Abdollahinejad, Behnaz | Pasalari, Hasan | Jafari, Ahmad Jonidi | Esrafili, Ali | Farzadkia, Mahdi
Present study aims to examine the efficiency of co-vermicomposting amended with activated sludge and E. fetida earthworm for bioremediation of diesel and gasoline from contaminated soil. The diesel and gasoline removal efficiency and degradation rates coefficients were estimated with gas chromatography (GC) analysis and first-order kinetics. The removal of gasoline and diesel in different co-vermicomposting processes with and without E. fetida ranged between 65-100% and 24.94–63.93%, respectively within 90- day experiment. Removal of gasoline and diesel increased in soil with addition of earthworm (E. fetida); higher degradation rate coefficients (k) were observed for co-vermicomposting with earthworm compared with co-vermicomposting processes. The highest k (0.014) for diesel degradation was estimated for microcosm reactor 4 (R4), where high numbers of E. fetida accelerate the less biodegradable organic contaminant from the soil matrices. The reasonable survival rates of earthworms in exposure to high concentration of petroleum-derivatives contaminated soils indicated increased activity of ligninolytic diesel–degrading earthworms and microorganisms. Therefore, co-vermicomposting amended with activated sludge is suggested as feasible and promising technologies for bioremediation of high content of organic contaminants from the soil matrices.
Показать больше [+] Меньше [-]Toxicokinetics and persistent thyroid hormone disrupting effects of chronic developmental exposure to chlorinated polyfluorinated ether sulfonate in Chinese rare minnow
2020
Liu, Wei | Yang, Jing | Li, Jingwen | Zhang, Jiangyu | Zhao, Jing | Yu, Dan | Xu, Yukang | He, Xin | Zhang, Xin
The abnormality in thyroid hormone modulation in developmental fish, vulnerable to per- and polyfluorinated substances, is of particular concerns for the alternative substances. Juvenile rare minnows, were exposed to chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), the novel alternatives to perfluorooctane sulfonate (PFOS), for 4 weeks followed by 12 weeks of depuration. Half lives were determined to be 33 d, 29 d, and 47 d for total Cl-PFESAs, C8 Cl-PFESA and C10 Cl-PFESA, respectively. Preliminary toxicity test suggested that Cl-PFESAs are moderately toxic to Rare minnow with a LC50 of 20.8 mg/L (nominal concentration) after 96 h of exposure. In the chronic toxicity test, fishes were exposed to Cl-PFESAs at geometric mean measured concentrations of 86.5 μg/L, 162 μg/L and 329 μg/L. In juvenile fishes exposed to Cl-PFESAs for 4 weeks, gene profile sequencing analysis identified 3313 differentially expressed genes, based on which pathways regulating thyroid hormone synthesis and steroid synthesis were enriched. Both whole body total and free 3,5,3′-triiodothyronine (T3) levels were significantly increased. mRNA expression of genes regulating thyroid hormone synthesis (corticotropin-releasing hormone (CRH), thyroid-stimulating hormone (THS), sodium/iodide symporter (NIS), thyroglobulin (TG), and thyroid peroxidase (TPO), transport (transthyretin,TTR), deiodinase (Dio1, Dio2) and receptor (TRα and TRβ) were decreased. Uridinediphosphate glucoronosyl-transferases (UGT1A) gene, regulating THs metabolism, was also decreased. In adult fish, thyroid hormone and genes expression in hypothalamic-pituitary-thyroid axis remained at disturbed levels after 12 weeks of depuration without exposure. Chronic developmental exposure to Cl-PFESAs caused persistent thyroid hormone disrupting effects in fish, highlighting a necessity of comprehensive ecological risk assessment.
Показать больше [+] Меньше [-]Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders
2020
Chen, Jianfei | Tong, Tianli | Jiang, Xinshu | Xie, Shuguang
The pollution of wastewater with antibiotics and antibiotics resistance genes has attracted public concerns about ecosystem and global health. Swine wastewater can contain high concentrations of antibiotics, especially sulfonamides, even after full-scale wastewater treatment. In this study, mesocosm-scale vertical flow constructed wetlands (VF-CWs) were applied to abate nutrients and antibiotics in swine wastewater containing sulfonamides. VF-CWs performed well in the removal of both nutrients and antibiotics. Sulfonamides did not influence total organic carbon (TOC) and total phosphorus (TP) removal, and even slightly enhanced NH₄⁺–N removal. High removal efficiencies (26.42–84.05%) were achieved for sulfadiazine (SDZ), sulfamethoxazole (SMX) and sulfamethazine (SMZ). Together with lab-scale sorption and biodegradation experiments, microbial degradation was found to be the most important removal mechanism for sulfonamides in VF-CWs. Sulfonamides addition increased bacterial alpha-diversity and changed microbial community structure. Moreover, antibiotics promoted antibiotic-resistant or -degrading bacteria. Bacillus, Geobacter and other seven genera were correlated with sulfonamides reduction under either aerobic or anaerobic condition. In summary, VF-CW is a suitable alternative for swine wastewater treatment, and biodegradation plays the key role in sulfonamides abatement.Main findings of the work.This was the first work to combine bacterial community analysis with microcosm experiments to uncover the major removal mechanism of sulfonamides in constructed wetlands.
Показать больше [+] Меньше [-]Monobutyl phthalate (MBP) can dysregulate the antioxidant system and induce apoptosis of zebrafish liver
2020
Jiao, Yaqi | Tao, Yue | Yang, Yang | Diogene, Tuyiringire | Yu, Hui | He, Ziqing | Han, Wei | Chen, Zhaobo | Wu, Pan | Zhang, Ying
In this paper, the acute toxicity of monobutyl phthalate (MBP), the main hydrolysis product of dibutyl phthalate, on adult zebrafish liver antioxidant system was studied. Compared the toxicity effect of MBP and DBP by histopathology and apoptosis experiments, we speculated that the toxic effects of DBP on animals may be caused by its metabolite MBP. The results indicated that the antioxidant Nrf2-Keap1 pathway was insufficient to resist MBP-induced hepatotoxicity and led to an imbalance of membrane ion homeostasis and liver damage. Decreased cell viability, significant tissue lesions and early hepatocyte apoptosis were observed in the zebrafish liver in MBP exposure at high concentration (10 mg/L). The activities of antioxidant enzymes and ATPases in zebrafish liver were inhibited with increased malondialdehyde (MDA) content and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Integrated biomarker response (IBR) calculation results indicated that MBP mainly inhibited catalase (CAT) activity. Simultaneously, the expression of antioxidant-related genes (SOD, CAT, GPx, Nrf2, HO-1) was down-regulated, while apoptosis-related genes (p53, bax, cas3) were significantly up-regulated.
Показать больше [+] Меньше [-]Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil
2020
Hamid, Yasir | Tang, Lin | Hussain, Bilal | ʻUs̲mān, Muḥammad | Gurajala, Hanumanth Kumar | Rashid, Muhammad Saqib | He, Zhenli | Yang, Xiaoe
Present study reports the laboratory and field scale application of different organic and inorganic amendments to immobilize cadmium (Cd) and lead (Pb) in a co-contaminated alluvial paddy soil. For that purpose, lime, biochar, Fe-biochar and two composite amendments (CA) composed of biochar, lime, sepiolite and zeolite (CA1: composite amendment 1) and manure, lime and sepiolite (CA2: composite amendment 2) were firstly tested in an incubation experiment to ameliorate Cd and Pb co-contaminated alluvial soil. It was observed that liming and CA2 elevated the soil pH and reduced DTPA extractable Cd and Pb in the incubated soil leading to higher metal immobilization. Therefore, efficiency of lime and CA2 was further investigated in field conditions with mid rice as the test crop to evaluate field scale immobilization and precise application rate for the tested soil type. DTPA and CaCl₂ extractable Cd (46 and 51%) and Pb (68 and 70%) in field soil were decreased with applied treatments. Speciation of Cd and Pb also promoted conversion of metal exchangeable contents to less-available forms. Activated functional groups on amendments’ surface (_OH bonding, C_O and CO, -O-H, Si–O–Si, carboxylic and ester groups) sequestered metals by precipitation, adsorption, ion exchange or electro static attributes. Application of lime at 2400 kg/acre (T4) and CA2 at 1200 kg/acre was more effective in reducing rice shoot and grains metal contents. Moreover, obtained results in terms of pH, extractable content, speciation and yield, and microanalysis of amendments highlights the remarkable efficiency of lime and composite amendment to sorb Cd and Pb providing the key evidence of these amendments for metals immobilization and environmental remediation. Considering these results, lime and CA2 are potential amendments for co-contaminated rice field especially in context of alluvial soil.
Показать больше [+] Меньше [-]Three-year field experiment on the risk reduction, environmental merit, and cost assessment of four in situ remediation technologies for metal(loid)-contaminated agricultural soil
2020
Wan, Xiaoming | Lei, Mei | Yang, Jun | Chen, Tongbin
The traditional assessment of agricultural soil remediation technologies pay limited attention to sustainability and only considers the decrease in contaminant concentrations and cost, even though the sustainability of these technologies has been prioritized. This 3-year field study comprehensively assessed the sustainability of four commonly used agricultural soil remediation technologies in terms of metal(loid) removal efficiency, environmental merit, and cost. The farmland was contaminated by previous sewage irrigation with excessive amounts of As, Cd, and Pb. The four selected remediation technologies used were phytoextraction, intercropping of hyperaccumulators and cash crops, chemical immobilization, and turnover and attenuation (T&A). A risk reduction–environmental merit–cost model was utilized to compare these four technologies. Results showed that T&A reduced the health risks posed by excess metal(loid)s by ∼47% and yielded the highest risk reduction and lowest cost. Phytoextraction achieved the highest environmental merit because it produced the least interruption to the environment. A simplified assessment frame for soil remediation technology was established from a retrospective aspect using data from a real soil remediation project. Environmental merit is a less considered factor and more difficult to quantify than risk reduction or cost, thus requiring increased attention.
Показать больше [+] Меньше [-]DEHP induces neutrophil extracellular traps formation and apoptosis in carp isolated from carp blood via promotion of ROS burst and autophagy
2020
Yirong, Cao | Shengchen, Wang | Jiaxin, Sun | Shuting, Wang | Ziwei, Zhang
Di (2-ethylhexyl) phthalate (DEHP), a widely spreading environmental endocrine disruptor, has been confirmed to adversely affect the development of animals and humans. The formation of neutrophil extracellular traps (NETs) termed NETosis, is a recently identified antimicrobial mechanism for neutrophils. Though previous researches have investigated inescapable role of the immunotoxicity in DEHP-exposed model, relatively little is known about the effect of DEHP on NETs. In this study, carp peripheral blood neutrophils were treated with 40 and 200 μmol/L DEHP to investigate the underlying mechanisms of DEHP-induced NETs formation. Through the morphological observation of NETs and quantitative analysis of extracellular DNA, we found that DEHP exposure induced NETs formation. Moreover, our results proved that DEHP could increase reactive oxygen species (ROS) levels, decrease the expression of the anti-autophagy factor (mTOR) and the anti-apoptosis gene Bcl-2, and increase the expression of pro-autophagy genes (Dynein, Beclin-1 and LC3B) and the pro-apoptosis factors (BAX, Fas, FasL, Caspase3, Caspase8, and Caspase9), thus promoting autophagy and apoptosis. These results indicate that DEHP-induced ROS burst stimulates NETs formation mediated by autophagy and increases apoptosis in carp neutrophils.
Показать больше [+] Меньше [-]Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges
2020
Schneider, Marcel | Rataj, Raphael | Kolb, Juergen F. | Bláha, Luděk
Cylindrospermopsin (CYN) is an important cyanobacterial toxin posing a major threat to surface waters during cyanobacterial blooms. Hence, methods for cyanotoxin removal are required to confront seasonal or local incidences to sustain the safety of potable water reservoirs. Non-thermal plasmas provide the possibility for an environmentally benign treatment which can be adapted to specific concentrations and environmental conditions without the need of additional chemicals. We therefore investigated the potential of two different non-thermal plasma approaches for CYN degradation, operated either in a water mist, i.e. in air, or submerged in water. A degradation efficacy of 0.03 ± 0.00 g kWh⁻¹ L⁻¹ was found for a dielectric barrier discharge (DBD) operated in air, while a submerged pulsed corona-like discharge resulted in an efficacy of 0.24 ± 0.02 g kWh⁻¹ L⁻¹. CYN degradation followed a pseudo zeroth order or pseudo first order reaction kinetic, respectively. Treatment efficacy of the corona-like discharge submerged in water increased with pH values of the initial solution changing from 5.0 to 7.5. Notably, a pH-depending residual oxidative effect was observed for the submerged discharge, resulting in ongoing CYN degradation, even without further plasma treatment. In this case hydroxyl radicals were identified as the dominant oxidants of CYN at acidic pH values. In comparison, degradation by the DBD could be related primarily to the generation of ozone.
Показать больше [+] Меньше [-]Light absorption, fluorescence properties and sources of brown carbon aerosols in the Southeast Tibetan Plateau
2020
Wu, Guangming | Wan, Xin | Ram, Kirpa | Li, Peilin | Liu, Bin | Yin, Yongguang | Fu, Pingqing | Loewen, Mark | Gao, Shaopeng | Kang, Shichang | Kawamura, Kimitaka | Wang, Yongjie | Cong, Zhiyuan
Brown carbon (BrC) has been proposed as an important driving factor in climate change due to its light absorption properties. However, our understanding of BrC’s chemical and optical properties are inadequate, particularly at remote regions. This study conducts a comprehensive investigation of BrC aerosols in summer (Aug. 2013) and winter (Jan. 2014) at Southeast Tibetan Plateau, which is ecologically fragile and sensitive to global warming. The concentrations of methanol-soluble BrC (MeS-BrC) are approximately twice of water-soluble BrC (WS-BrC), demonstrating the environmental importance of water-insoluble BrC are previously underestimated with only WS-BrC considered. The mass absorption efficiency of WS-BrC (0.27–0.86 m² g⁻¹) is lower than those in heavily polluted South Asia, indicating a distinct contrast between the two sides of Himalayas. Fluorescence reveals that the absorption of BrC is mainly attributed to humic-like and protein-like substances, which broaden the current knowledge of BrC’s chromophores. Combining organic tracer, satellite MODIS data and air-mass backward trajectory analysis, this study finds BrC is mainly derived from bioaerosols and secondary formation in summer, while long-range transport of biomass burning emissions in winter. Our study provides new insights into the optical and chemical properties of BrC, which may have implications for environmental effect and sources of organic aerosols.
Показать больше [+] Меньше [-]Elucidating the structural variation of membrane concentrated landfill leachate during Fenton oxidation process using spectroscopic analyses
2020
Teng, Chunying | Zhou, Kanggen | Zhang, Zhang | Peng, Changhong | Chen, Wei
Membrane concentrated landfill leachate (MCLL) contains large amounts of recalcitrant organic matter that cause potential hazards to the environment. Knowledge on the compositional variation of MCLL during treatment is important for a better understanding on the degradation pathway of organic pollutants. In this work, the structural change of MCLL during Fenton oxidation process was examined using spectroscopic techniques. The removal rates of COD, TOC and UV254 reached 78.9 ± 1.3%, 70.2 ± 1.4% and 90.64 ± 1.6%, respectively, under the optimal condition (i.e., dosage of H2O2 = 9.0 mL/200 mL, H2O2/Fe(II) molar ratio = 3.0, pH = 3.0, time = 40 min). Spectral analyses suggested that aromatic/CC structure and CO bonds in MCLL can be successfully destroyed by Fenton oxidation, resulting in a decrease in molecular weight. One fulvic-like and one humic-like components were identified in MCLL, both of which can be removed by Fenton treatment. In addition, two-dimensional correlation spectroscopic analyses suggested the oxidative changes of MCLL structure in the order of fulvic-like component/unsaturated conjugated bond > aromatic structure > humic-like component. The results may provide a new insight to the understanding on the structure variation of MCLL during treatment, which is beneficial for the design of cost-effective treatment strategies.
Показать больше [+] Меньше [-]