Уточнить поиск
Результаты 511-520 из 7,921
Terrestrial dissolved organic matter source affects disinfection by-product formation during water treatment and subsequent toxicity
2021
Franklin, Hannah M. | Doederer, Katrin | Neale, Peta A. | Hayton, Joshua B. | Fisher, Paul | Maxwell, Paul | Carroll, Anthony R. | Burford, Michele A. | Leusch, Frederic D.L.
Restoring woody vegetation to riparian zones helps to protect waterways from excessive sediment and nutrient inputs. However, the associated leaf litter can be a major source of dissolved organic matter (DOM) leached into surface waters. DOM can lead to the formation of disinfection by-products (DBPs) during drinking water treatment. This study investigated the DBPs formed during chlorination of DOM leached from leaf litter and assessed the potential toxicity of DBPs generated. We compared the leachate of two native Australian riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis, and a reservoir water source from a catchment dominated by Eucalyptus species. Leachates were diluted to dissolved organic carbon concentrations equivalent to the reservoir (~9 mg L⁻¹). E. tereticornis leachates produced more trihalomethanes (THMs), haloacetic acids (HAAs), and haloketones after chlorination, while C. cunninghamiana produced more chloral hydrate and haloacetonitriles. Leachate from both species produced less THMs and more HAAs per mole of carbon than reservoir water. This may be because reservoir water had more aromatic, humic characteristics while leaf leachates had relatively more protein-like components. Using in vitro bioassays to test the mixture effects of all chemicals, chlorinated E. tereticornis leachate induced oxidative stress in HepG2 liver cells and bacterial toxicity more frequently and at lower concentrations than C. cunninghamiana and reservoir water. Overall, this study has shown that the DOM leached from litter of these species has the potential to generate DBPs and each species has a unique DBP profile with differing bioassay responses. E. tereticornis may pose a relatively greater risk to drinking water than C. cunninghamiana as it showed greater toxicity in bioassays. This implies tree species should be considered when planning riparian zones to ensure the benefits of vegetation to waterways are not offset by unintended increased DBP production and associated toxicity following chlorination at downstream drinking water intakes.
Показать больше [+] Меньше [-]Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice
2021
Li, Dapeng | Jiang, Lilong | Hong, Yanjun | Cai, Zongwei
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
Показать больше [+] Меньше [-]Metal lability and environmental risk in anthropogenically disturbed Antarctic melt streams
2021
Koppel, Darren J. | Bishop, Jordan | Kopalová, Kateřina | Price, Gwilym A.V. | Brown, Kathryn E. | Adams, Merrin S. | King, Catherine K. | Jolley, Dianne F.
Antarctic melt streams are important ecosystems that increasingly face contaminant pressures from anthropogenic sources. Metal contaminants are often reported in the limno-terrestrial environment but their speciation is not well characterised, making environmental risk assessments difficult. This paper characterises labile metal concentrations in five melt streams and three shallow lakes around the Casey and Wilkes research stations in East Antarctica using chemical extracts and field deployments of diffusive gradients in thin-film (DGT) samplers. An acute toxicity test with field-collected Ceratadon purpeus and taxonomic identification of diatoms in melt streams were used to infer environmental risk. Copper and zinc were the most labile metals in the melt streams. DGT-labile copper concentrations were up to 3 μg Cu L⁻¹ in melt-stream waters but not labile below the sediment-water interface. DGT-labile zinc concentrations were consistent above and below the sediment-water interface at concentrations up to 14 μg Zn L⁻¹ in four streams, but one stream showed evidence of zinc mineralisation in the sediment with a flux to overlying and pore waters attributed to the reductive dissolution of iron and manganese oxides. Other metals, such as chromium, nickel, and lead were acid-extractable from the sediments, but not labile in pore waters or overlying waters. All streams had unique compositions of freshwater diatoms, but one had particularly reduced diversity and richness, which correlated to metal contamination and sediment physico-chemical properties such as a finer particle size. In laboratory bioassays with field-collected samples of the Antarctic moss C. purpeus, there was no change in photosynthetic efficiency following 28-d exposure to 700, 900, 1060, or 530 μg L⁻¹ of cadmium, copper, nickel, and zinc, respectively. This study shows that microorganisms such as diatoms may be at greater risk from contaminants than mosses, and highlights the importance of geochemical factors controlling metal lability.
Показать больше [+] Меньше [-]Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps
2021
Piarulli, Stefania | Hansen, Bjørn Henrik | Ciesielski, Tomasz | Zocher, Anna-Lena | Malzahn, Arne | Olsvik, Pål A. | Sonne, Christian | Nordtug, Trond | Jenssen, Bjørn Munro | Booth, Andy M. | Farkas, Júlia
Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.
Показать больше [+] Меньше [-]Potential of using a new aluminosilicate amendment for the remediation of paddy soil co-contaminated with Cd and Pb
2021
Zhao, Hanghang | Huang, Xunrong | Liu, Fuhao | Hu, Xiongfei | Zhao, Xin | Wang, Lu | Gao, Pengcheng | Li, Xiuying | Ji, Puhui
Cadmium (Cd) and lead (Pb) are toxic heavy metals that impact human health and biodiversity. Removal of Cd/Pb from contaminated soils is a means for maintaining environmental sustainability and biodiversity. In this study, we applied a newly modified material fly ash (NA), zeolite (ZE), and fly ash (FA) to the paddy soils and evaluated the effects of Cd/Pb accumulation in rice via a one-year field experiment. The results showed that the application of NA and ZE enhanced the soil pH and nutrients to a large extent and reduced the availability of Cd/Pb in soil. The Cd and Pb concentrations in rice grains decreased by 32.8% and 62.9%, respectively, with the NA treatments. Similarly, the application of ZE reduced the Cd and Pb concentrations in rice grains by a factor of 27.9% and 63.5%, respectively, which indicates that the amendments can promote the transfer of Cd and Pb from acid-exchangeable fraction to oxidizable and residual fractions. The Cd/Pb showed a significant positive correlation to other metal ions and a negative correlation to the nutrients. Generally, the application of NA and ZE was effective in reducing Cd/Pb accumulation and improving rice yield. Moreover, the NA was more cost-effective than ZE. Hence, this study proves that NA may be a better amendment for remediation of Cd/Pb contaminated soils.
Показать больше [+] Меньше [-]Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning
2021
Martin, Cecilia | Zhang, Qiannan | Zhai, Dongjun | Zhang, Xiangliang | Duarte, Carlos M.
Beach litter assessments rely on time inefficient and high human cost protocols, mining the attainment of global beach litter estimates. Here we show the application of an emerging technique, the use of drones for acquisition of high-resolution beach images coupled with machine learning for their automatic processing, aimed at achieving the first national-scale beach litter survey completed by only one operator. The aerial survey had a time efficiency of 570 ± 40 m² min⁻¹ and the machine learning reached a mean (±SE) detection sensitivity of 59 ± 3% with high resolution images. The resulting mean (±SE) litter density on Saudi Arabian shores of the Red Sea is of 0.12 ± 0.02 litter items m⁻², distributed independently of the population density in the area around the sampling station. Instead, accumulation of litter depended on the exposure of the beach to the prevailing wind and litter composition differed between islands and the main shore, where recreational activities are the major source of anthropogenic debris.
Показать больше [+] Меньше [-]Non-noble metal (Ni, Cu)-carbon composite derived from porous organic polymers for high-performance seawater electrolysis
2021
Gopi, Sivalingam | Vadivel, Selvamani | Pinto, Leandro M.C. | Syed, Asad | Kathiresan, Murugavel | Yun, Kyusik
The hydrothermal preparation of o-dianisidine and triazine interlinked porous organic polymer and its successive derivatisation via metal infusion (Ni, Cu) under hydrothermal and calcination conditions (700 °C) to yield pristine (ANIPOP-700) and Ni/Cu decorated porous carbon are described here (Ni-ANIPOP-700 and Cu-ANIPOP-700). To confirm their chemical and morphological properties, the as-prepared materials were methodically analyzed using solid state ¹³C and ¹⁵N NMR, X-ray diffraction, Raman spectroscopy, field emission scanning and high resolution transmission electron microscopic techniques, and x-ray photoelectron spectroscopy. Furthermore, the electrocatalytic activities of these electrocatalysts were thoroughly investigated under standard oxygen evolution (OER) and hydrogen evolution reaction (HER) conditions. The results show that all of the materials demonstrated significant activity in water splitting as well as displayed excellent stability (22 h) in both acidic (HER) and basic conditions (OER). Among the electrocatalysts reported in this study, Ni-ANIPOP-700 exhibited a lower overpotential η₁₀ of 300 mV in basic medium (OER) and 150 mV in acidic medium (HER), as well as a lower Tafel slope of 69 mV/dec (OER) and 181 mV/dec (HER), indicating 30% lower energy requirement for overall water splitting. Gas chromatography was used to examine the electrolyzed products.
Показать больше [+] Меньше [-]Development of Artificial Neural Network for prediction of radon dispersion released from Sinquyen Mine, Vietnam
2021
Duong, Van-Hao | Ly, Hai-Bang | Trinh, Dinh Huan | Nguyễn, Thái Sơn | Pham, Binh Thai
Understanding the radon dispersion released from this mine are important targets as radon dispersion is used to assess radiological hazard to human. In this paper, the main objective is to develop and optimize a machine learning model namely Artificial Neural Network (ANN) for quick and accurate prediction of radon dispersion released from Sinquyen mine, Vietnam. For this purpose, a total of million data collected from the study area, which includes input variables (the gamma data of uranium concentration with 3 × 3m grid net survey inside mine, 21 of CR-39 detectors inside dwellings surrounding mine, and gamma dose at 1 m from ground surface data) and an output variable (radon dispersion) were used for training and validating the predictive model. Various validation methods namely coefficient of determination (R²), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) were used. In addition, Partial dependence plots (PDP) was used to evaluate the effect of each input variable on the predictive results of output variable. The results show that ANN performed well for prediction of radon dispersion, with low values of error (i.e., R² = 0.9415, RMSE = 0.0589, and MAE = 0.0203 for the testing dataset). The increase of number of hidden layers in ANN structure leads the increase of accuracy of the predictive results. The sensitivity results show that all input variables govern the dispersion radon activity with different amplitudes and fitted with different equations but the gamma dose is the most influenced and important variable in comparison with strike, distance and uranium concentration variables for prediction of radon dispersion.
Показать больше [+] Меньше [-]Spatial distributions, source apportionment and ecological risks of C9–C17 chlorinated paraffins in mangrove sediments from Dongzhai Harbor, Hainan Island
2021
Xia, Dan | Vaye, Oliver | Yang, Yunan | Zhang, Haoteng | Sun, Yifei
The spatial distributions, possible sources of C₉–C₁₇ chlorinated paraffins (CPs), and the ecological risks posed in mangrove sediment in Dongzhai Harbor (Hainan Island, China) were investigated. Comprehensive two-dimensional gas chromatography combined with electron capture negative ionization mass spectrometry was used to determine 50 C₉–C₁₇ CP congener groups. The concentrations of C₉-CPs, short-chain CPs (SCCPs), and medium-chain CPs (MCCPs) in the mangrove sediment samples were 8.28–79.7, 89.2–931, and 58.8–834 ng g⁻¹ dry weight, respectively. The CPs concentrations in the mangrove sediment samples were moderate compared with those found in other regions worldwide. The spatial distributions and congener patterns of the CPs indicated that the CP concentrations were mainly controlled by local emissions and that wastewater discharged from livestock and shrimp breeding facilities and domestic sewage were the main sources of CPs in mangrove sediment in Dongzhai Harbor. C₁₀Cl₆–₇ and C₁₄Cl₇–₈ were the dominant SCCP and MCCP congener groups, respectively. The MCCP concentrations and total organic carbon contents significantly correlated (R² = 0.607, P < 0.05). Hierarchical cluster analysis and principal component analysis indicated that the SCCP and MCCP congeners were from different commercial CP formulations and sources. Risk assessments suggested that SCCPs and MCCPs in mangrove sediment in Dongzhai Harbor do not currently pose marked risks to sediment-dwelling organisms.
Показать больше [+] Меньше [-]Soot particle morphology and nanostructure with oxygenated fuels: A comparative study into cold-start and hot-start operation
2021
Verma, Puneet | Jafari, Mohammad | Zare, Ali | Pickering, Edmund | Guo, Yi | Osuagwu, Chiemeriwo Godday | Stevanovic, Svetlana | Brown, Richard | Ristovski, Zoran
This study investigates the morphology and nanostructure of soot particles during cold-start and hot-start engine operation of a diesel engine using oxygenated fuels. The soot samples were analysed using transmission electron microscopy. The oxygen content in the fuel was varied between 0 and 12%. The results showed that the primary particles during cold-start have significantly smaller size when compared to hot-start engine operation. The addition of oxygenated fuels also resulted in smaller sized primary particles. Smaller radius of gyration and higher fractal dimension of soot aggregates during cold-start would mean smaller aggregate size with a more compact structure. Shorter fringes with a higher inter-fringe spacing for cold-start would mean lower graphitisation of soot particles that could be related to higher oxidation reactivity of soot particles.
Показать больше [+] Меньше [-]