Уточнить поиск
Результаты 531-540 из 558
An Integrated GIS-AHP Approach for Municipal Solid Waste Landfill Siting in Srikakulam District, Andhra Pradesh Полный текст
2023
Penki Ramu , Basina Sai Santosh and Praveen S.
The availability of land for proper waste disposal is one of the most important and emerging potential challenges in most big cities. Although some attempts are being made to minimize and recover garbage, landfill disposal continues to be the dominant method of waste disposal. An improper landfill site can negatively impact the environment, the economy, and the environment. Thus, it should be carefully chosen, taking into consideration both rules and standards from other sources. To examine all aspects of this study, an integration of the “Geographic Information System (GIS)” and the “Analytic Hierarchy Process (AHP)” was incorporated for land-fill site selection. Various parameters were examined to make decisions about landfill site selection. These parameters included slope, elevation, soil texture, LULC, surface water, groundwater table, road network, historical areas, and residential areas. An analytic-hierarchy process was used to determine the relative importance of each parameter, and a final site suitability map was created. With an equal interval classification method, the final index model was categorized into four categories, which included “unsuitable”, “less suitable”, “moderately suitable” and “suitable”. As a result, 30.28% of the study area was less suitable, 28.49% was moderately suitable, 12.39% was suitable, and 28.84% of the study area was unsuitable for landfilling.
Показать больше [+] Меньше [-]Pattern Characterization of Meteorological Drought Using Multivariate Drought Index Over Mirzapur in Middle Gangetic Plains of India Полный текст
2023
Shivani Gond, Nitesh Gupta, P. K. S. Dikshit and Shyam Bihari Dwivedi
Droughts and floods have been occurring at a higher frequency in recent decades. The rapid transition between them magnifies the socio-economic consequences of these catastrophes relative to the effects of the individual occurrences of the extreme event. This study examines the temporal variability of meteorological drought and wet event characteristics occurring over Mirzapur (Uttar Pradesh), India. The Standardized Precipitation Evapotranspiration Index (SPEI) is applied to monthly water balance at scales 3, 6, 9, and 12 months to estimate the meteorological drought and wet events from 1971 to 2018. Drought and wet event characteristics such as the number of drought/wet events, severity, duration, and intensity are estimated using run theory over SPEI output. While characterizing the pattern of trends over the historical time period, variable-sized cluster analysis (VSCA) allows the detection of multiple change points as opposed to the Mann-Kendall (MK) test, which produces a monotonic trend for the entire time period. The VSCA technique accounts for drought variability and depicts the pattern’s evolution across the period under consideration. Station-scale drought data from Mirzapur, Uttar Pradesh (UP), India, were used in the procedure. VSCA allows for the detection of many change points while describing the pattern of drought trend throughout a historical period, as opposed to the usual Mann-Kendall (MK) test, which provides a monotonic trend for the whole time. As a result, VSCA demonstrated the MK test compatibility.
Показать больше [+] Меньше [-]Utilization of Enterobacter cloacae WW1 Biomass for Biosorption of Lead(II) from Aqueous Solution Полный текст
2023
S. Thongkrua and A. Kasuya
The present study evaluated lead biosorption by Enterobacter cloacae WW1 isolated from tannery wastewaters under different initial Pb2+ concentrations, biomass concentrations, and contact times. The results showed that at an initial Pb2+ concentration of 80 mg.L-1, the optimal conditions for living cells were a biomass concentration of 7 g.L-1 and a contact time of 120 min. For non-living cells, biomass was a biomass concentration of 4 g.L-1 and contact time of 45 min, which provided removal efficiencies of 92.03 ± 0.10% and 99.51 ± 0.01%, respectively. The maximum biosorption capacity obtained for non-living cells using an initial Pb2+ concentration of 640 mg.L-1 was 76.65 ± 0.05 mg.g-1. The equilibrium data followed the Langmuir and Freundlich models for living cells, and the data for non-living cell biosorbents fit the Langmuir model. The biosorption kinetics for living and non-living cells fit well with a pseudo-second-order kinetic equation. SEM-EDX analysis clearly showed the morphology and presence of Pb2+ particles on non-living cell surfaces after biosorption. In addition, the results revealed that functional groups such as hydroxyl, amino, carboxyl, amide, and phosphate groups on the bacterial cell surface detected by FTIR were associated with the binding of Pb2+ ions. The results indicated that E. cloacae WW1, a lead-resistant bacterium, can be used as an alternative biosorbent for lead removal from wastewater.
Показать больше [+] Меньше [-]Experimental Study on Heat Recovery of Air Dryer from Waste Heat Energy of Condensing Unit from VCRS Air Conditioner Полный текст
2023
S. N. Yaakop, M. H. F. Md Fauadi and A. A. Muhammad Damanhuri
Heating, Ventilating, and Air Conditioning (HVAC) is a system to condition indoor air by cooling or heating to achieve thermal comfort for a human being. The HVAC system operates based on the refrigeration cycle, where heat is dissipated from the condensing unit in the warm air arrangement. This represents an ironic foundation of heat that might be recovered for further schemes or applications. In this paper, experimental work was developed to validate the proposed heat recovery system using heated air released from the condenser unit of the HVAC system as a source for the air dryer for the drying rack. Four different output parameters are to be observed in this research: the dry-bulb temperature of the air exit from the condenser unit, the dry-bulb temperature of the air inflowing the dryer, and the drying time and the relative humidity of the air leaving the dryer. These experimental works were conducted using a domestic application of a 1.0 hp air conditioning (AC) system with R-22 refrigerant gas and based on the following factors: The three-variant mass of wet clothes, the three-stage of mechanical fan speed for releasing warm air from the condenser, and the effect of variable ambient or surrounding air dry-bulb temperature were studied. A physical prototype of the dryer was constructed for proof-of-concept purposes. The experimental output was then analyzed to obtain precision and accurate data. To determine the system behavior, a refrigeration cycle analysis was conducted. It has been shown that an AC system of 1.0 hp can cover wet clothes drying of weights 1950 g, 4255 g, and 6350 g at 55, 80, and 110 min with a constant air velocity of 0.34 m-3.s-1 in an ambient temperature of 33°C. The significant contribution of this research is the proposed heat-recovery-based air dryer system with the capability to increase the Coefficient of Performance (COP) of the AC unit from 2.36 to 2.70. Hence, the energy-saving was received using the heat-recovered-based air dryer instead of a commercial electric air dryer system that uses high power consumption from their heater element.
Показать больше [+] Меньше [-]Evaluation of the Energy Factor and Equivalent CO2 Gas Emission by Utilization of Industrial By-products in Concrete for Environmental Protection Полный текст
2023
B. Saravanan, R. Divahar, S. P. Sangeetha and M. Bhuvaneshwari
Climate change and global warming are two of the world’s most pressing environmental issues. With CO2 being one of the most significant greenhouse gases released into the atmosphere, and cement and concrete manufacturing accounting for roughly 10% of worldwide CO2 emissions, the construction sector must employ an environmentally sustainable substance as a substitute for cement. The CO2 emissions, energy factor, and strength qualities of concrete were investigated. Those negative reaction of conventional cementitious substances is reduced by the development of binary and ternary cementitious systems. In this study, two mineral admixtures obtained from industrial waste substances, red mud (RM) and silica fume (SF), had been used as the alternatives for cement and fine aggregate was fully replaced by manufactured sand (M-sand). An experimental examination of the compressive strength, water absorption, density of concrete, equivalent CO2 emission, and energy factor for environmental benefits with the comparison of RM on SF-based eco-friendly concrete mix of M30 grade was used. A binary and ternary blended cementitious system with RM and SM was created with twelve various mix proportions, varying from 0-20% by 5% increases. From the binary blended cementitious system (BBS), based on the observed mechanical characteristic of concrete it was found that the optimum level of RM was 15% and SF was 10 % by the volume of cement. Similarly, for the ternary blended cementitious system (TBS), the level of 10% RM and 10% SF in the cement mixture provides a much higher improvement in compression strength compared to the alternative trials. The negative sign implies that replacing cement with RM and SF reduces energy consumption (-1.91% to -6.97%) and CO2 emissions (-4.52% to -16.16%). The use of mineral admixtures such as RM and SM in supplementary cementitious materials results in a significant outcome and potential impact on the production of sustainable concrete that addresses environmental issues.
Показать больше [+] Меньше [-]Evapotranspiration Over the Indian Region: Implications of Climate Change and Land Use/Land Cover Change Полный текст
2023
Garima Singh and Sudhir Kumar Singh
Evapotranspiration (ET) plays a significant role in climatic studies, directly influencing the hydrological cycle, energy balance equation, and surface vegetation. ET comprises three components: bare soil or ground evaporation, evaporation, and transpiration, in which vegetation removes water influenced by food grain production. In turn, soil moisture availability depends on precipitation characteristics over land, surface net radiation, and wind speed are the major climatic factors that together determine the magnitude of ET. This controls moisture availability in the lower troposphere, hence atmospheric stability, chances of cloud formation, and precipitation. Though the study of evapotranspiration is important for determining agricultural water consumption and analyzing drought situations, there is a lot of uncertainty in its accurate estimation. Land use/Land cover changes (LULCC) occurring throughout the Indian subcontinent have been found to affect the characteristics of low to moderate rainfall events and surface temperature extremes (Halder et al. 2016). A global warming scenario will change the hydrological cycle, and the impact of anthropogenic factors has also necessitated the need to understand the mechanisms that control changes in ET over India. In this study, we want to analyze the relationship between transpiration and the Normalized Difference Vegetation Index (NDVI) and investigate the relationship between canopy interception with respect to NDVI all over the Indian region. Attempts have been made to assess the impact of changes in climate and LULC on ET and its three components over the Indian region from 1981 till the present time. The monsoon season increases precipitation, and soil evaporation is found to increase at first, along with an increase in NDVI followed by canopy evaporation and transpiration. It is noted that changes in precipitation and LULCC across the Indian subcontinent have contributed significantly to changes in ET in different seasons. As variability in surface net radiation also plays an important role in controlling changes in total ET, it is being investigated.
Показать больше [+] Меньше [-]Differential effects of arsenite and arsenate on rice (Oryza sativa) plants differing in glutathione S-transferase gene expression Полный текст
2023
Pandey, Ambika | Wu, Lin-Bo | Murugaiyan, Varunseelan | Schaaf, Gabriel | Ali, Jauhar | Frei, Michael
Contamination of paddy soils with arsenic (As) can cause phytotoxicity in rice and increase the accumulation of arsenic in grains. The uptake and accumulation of As in rice depends on the different As species present in the soil. Plants detoxify As by conjugating and sequestering xenobiotic compounds into vacuoles using various enzymes. However, the severity of damage induced by arsenite (As(III)) and arsenate (As(V)), as well as the roles of glutathione S-transferase in detoxifying these As species in rice, are not fully understood. In this study, we developed plant materials overexpressing a glutathione S-transferase gene OsGSTU40 under the control of the maize UBIL promoter. Through systematic investigations of both wild-type Nipponbare (Oryza sativa L., ssp. japonica) and OsGSTU40 overexpression lines under chronic or acute stress of As, we aimed to understand the toxic effects of both As(III) and As(V) on rice plants at the vegetative growth stage. We hypothesized that (i) As(III) and As(V) have different toxic effects on rice plants and (ii) OsGSTU40 played positive roles in As toxicity tolerance. Our results showed that As(III) was more detrimental to plant growth than As(V) in terms of plant growth, biomass, and lipid peroxidation in both chronic and acute exposure. Furthermore, overexpression of OsGSTU40 led to better plant growth even though uptake of As(V), but not As(III), into shoots was enhanced in transgenic plants. In acute As(III) stress, transgenic plants exhibited a lower level of lipid peroxidation than wild-type plants. The element composition of plants was dominated by the different As stress treatments rather than by the genotype, while the As concentration was negatively correlated with phosphorus and silicon. Overall, our findings suggest that As(III) is more toxic to plants than As(V) and that glutathione S-transferase OsGSTU40 differentially affects plant reactions and tolerance to different species of arsenic.
Показать больше [+] Меньше [-]Air pollution and agricultural labor supply: Evidence from China Полный текст
2023
Ye, Hai-Jian | Huang, Zuhui | Chen, Shuai
Accounting for the annual variability when assessing non-point source pollution potential in Mediterranean regulated watersheds Полный текст
2023
Contreras, E. | Aguilar Porro, Cristina | Polo, María J.
The characterization of non-point source pollution at the watershed scale difficult owing to its distributed nature combined with the lack of suitable measurements for validation. This study proposes the classification of land within a Mediterranean watershed according to its potential source of non-point pollution, considering interannual precipitation variability and dam regulation effects. For this purpose, the potential non-point pollution index (PNPI) developed by the Italian Environmental Protection Agency was modified to include annual local precipitation behavior, named local annual PNPI (APNPI). PNPI and APNPI were computed for the Guadalquivir River (Spain), which has a drainage surface of 57,500 km2 and is highly regulated by >60 reservoirs. The results reflect the vulnerability along the Guadalquivir River in terms of the spatially variable non-point pollutant nature of its contributing watersheds. The annual average nitrate concentration values on the southern side exceeded the average value on the northern side by almost five times and showed a statistically significant power fit with the PNPI, with an R2 of 0.65. Long-term available nitrate data (1981/82–2006/07) on a monthly scale at the outlets of some watersheds allowed us to rank priority pollutant source areas within the watershed. The power fits between the annual average nitrate loads and the APNPI (R2 = 0.51–0.99) were statistically significant, which validated the utility of adding the variability of precipitation at an annual scale as a dynamic factor in the index. The APNPI can constitute a simple dynamic classification index for assessing the relative risk of non-point source pollution across a large area, especially in data-scarce situations.
Показать больше [+] Меньше [-]Categorization of Mining Materials for Restoration Projects by Means of Pollution Indices and Bioassays Полный текст
2023
Ferri-Moreno, Inmaculada | Barquero-Peralbo, Jose Ignacio | Andreu-Sánchez, Oscar | Higueras, Pablo | Roca-Pérez, Luis | García-Lorenzo, Mari Luz | Esbrí, Jose María
Sulfide mining wastes may lead to severe environmental and human health risks. This study aims to use geochemical and ecotoxicological indicators for the assessment of the ecological risks of potentially toxic elements (PTEs) in the San Quintín mining group to categorize wastes prior to mining restoration. Ecotoxicity was evaluated using crustacean (Dahpnia magna, Thamnocephalus platyurus) and algae (Raphidocelis subcapitata) bioassays. The geochemical and mineralogical results suggested that the mining residues underwent intense weathering processes, with active processes of acidity generation and metal mobility. Total PTEs concentrations indicated that the mining materials were extremely polluted, with Pb, Zn and Cd geoaccumulation index (Igeo) values higher than 5 in more than 90% of the samples. The pollution load index (PLI) showed average values of 18.1, which classifies them as very highly polluted. The toxicity tests showed a higher toxicity for plants than crustaceans, being the highest values of toxicity related to toxic elements (Pb, Cd and Zn), electrical conductivity and to pH. This paper presents for the first time the combination of indices in the categorization of mining waste prior to its restoration. The combination of them has made it possible to categorize the waste and adapt the restoration and remediation procedures.
Показать больше [+] Меньше [-]