Уточнить поиск
Результаты 541-550 из 6,533
Indoor air pollution from solid fuels and hypertension: A systematic review and meta-analysis
2020
Li, Lanyu | Yang, Aiming | He, Xiaotao | Liu, Jiangtao | Ma, Yueling | Niu, Jingping | Luo, Bin
Cardiovascular diseases (CVD) are leading global health issue. More studies have linked indoor air pollution from solid fuel usage to hypertension risk, a leading risk factor for CVD. We conducted a systematic review and meta-analysis of observational studies assessing the relationship of indoor air pollution from solid fuel with hypertension risk. Using a protocol standardized a priori, two independent reviewers searched PubMed, the Cochrane Library, Ovid MEDLINE, Web of Science and EMBASE for available studies published before Dec.1, 2019. A random effects model was used to analyse the pooled results. Out of 3740 articles, 47 were reviewed in depth and 11 contributing to this meta-analysis. The use of household solid fuel was significantly associated with an increased risk of hypertension (OR = 1.52, 95% CI = 1.26 to 1.85). The smoking-controlled group (OR = 2.38, 95% CI = 1.58 to 3.60) had greater effect size of hypertension than the uncontrolled group (OR = 1.11, 95% CI = 1.10 to 1.11). These findings implicate that indoor air pollution from solid fuel may be an important risk factor for hypertension.
Показать больше [+] Меньше [-]Silver nanoparticle and Ag+-induced shifts of microbial communities in natural brackish waters: Are they more pronounced under oxic conditions than anoxic conditions?
2020
Zou, Xiaoyan | Li, Penghui | Wang, Xiaodan | Zheng, Shenghui | Dai, Fuqiang | Zhang, Hongwu
With the burst of silver nanoparticles (AgNPs) applications, their potential entry into the environment has attracted increasing concern. To date, researches about the impacts of AgNPs on microbial communities have been scarcely conducted in the brackish waters. Here, the effects of interactions of AgNPs and Ag⁺ (as a positive control) with dissolved oxygen on natural brackish water microbial communities were investigated for 30 d. The introduction of AgNPs and Ag⁺ in natural brackish waters resulted in distinct bacterial community composition and structure as well as reduction of the richness and diversity, effects that were not eliminated completely during the tested periods. Anoxic conditions could attenuate the effects of AgNPs and Ag⁺ on the community, and dissolved oxygen made more contributions to community compositions for short-term exposure. High doses of AgNPs had more pronounced long-term impacts than Ag⁺ amendment. Compared with the controls, two general AgNP and Ag⁺ responses, namely, sensitivity and resistance, were observed. Sensitive species mainly included those of the genera Synechococcus and unclassified_f_Rhodobacteraceae, while resistant species mostly belonged to the phylum Bacteroidetes and participated in carbon metabolic processes. Our results indicated that the microbial communities that were involved in nutrient cycles (such as carbon, nitrogen, and sulfide) and photoautotrophic bacteria that contained bacteriochlorophyll were adversely affected by AgNPs and Ag⁺. In addition, dissolved oxygen could further change the microbial communities. These results implied that under different oxygen conditions AgNPs possibly resulted in varying microbial survival strategies and affected the biogeochemical cycling of nutrients in natural brackish waters.
Показать больше [+] Меньше [-]Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties
2020
Kim, Shin Woong | Kim, Dasom | Jeong, Seung-Woo | An, Youn-Joo
Plastic polymers are widely used in various applications and are thus prevalent in the environment. Over time, these polymers are slowly degraded into nano- and micro-scale particles. In this study, the free-living nematode, Caenorhabditis elegans, was exposed to polystyrene particles of two different sizes (42 and 530 nm) in both liquid and soil media. The number of offspring significantly (p < 0.05) decreased at polystyrene concentrations of 100 mg/L and 10 mg/kg in liquid and soil media, respectively. In soil media, but not liquid media, C. elegans was more sensitive to the larger particles (530 nm) than the smaller particles (42 nm), and the median effective concentration (EC₅₀) values of the 42 and 530 nm-sized particles were found to be > 100 and 14.23 (8.91–22.72) mg/kg, respectively. We performed the same toxicity bioassay on five different field-soil samples with different physicochemical properties and found that the size-dependent effects were intensified in clay-rich soil samples. A principal component analysis showed that the bulk density, cation exchange capacity, clay content, and sand content were the dominant factors influencing the toxicity of the 530 nm-sized polystyrene particles. Therefore, we conclude that the soil composition has a significant effect on the toxicity induced by these 530 nm-sized polystyrene particles.
Показать больше [+] Меньше [-]Natural aeolian dust particles have no substantial effect on atmospheric polycyclic aromatic hydrocarbons (PAHs): A laboratory study based on naphthalene
2020
Natural aeolian dust (AD) particles are potential carriers of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The heterogeneous interaction between them may lead to worsened air quality and enhanced cytotoxicity and carcinogenicity of ambient particulates in downwind areas, and this topic requires in-depth exploration. In this study, AD samples were collected from four Asian dust sources, and their physical properties and compositions were determined, showing great regional differences. The physical and chemical interactions of different AD particles with naphthalene (Nap; model PAH) were observed in aqueous systems. The results showed that AD particles from the Loess Plateau had weak adsorption to Nap, which was fitted by the Langmuir isotherm. There was no obvious adsorption to Nap found for the other three AD samples. This difference seemed to depend mainly on the specific surface area and/or the total pore volume. In addition, the Nap in the aqueous solution did not undergo chemical reactions under dark conditions and longwave ultraviolet (UV) radiation but degraded under shortwave UV radiation, and 2-formylcinnamaldehyde and 1,4-naphthoquinone were the first-generated products. The degradation of Nap in the aqueous solution was probably initiated by photoionization, and the reaction rate constant (between 1.44 × 10⁻⁴ min⁻¹ and 8.55 × 10⁻⁴ min⁻¹) was much lower than that of Nap with hydroxyl radicals. Instead of inducing or promoting the chemical change in Nap, the AD particles slowed photodegradation due to the extinction of radiation. Therefore, it is inferred that natural AD particles have no substantial effect on the transportation and transformation of PAHs in the atmosphere.
Показать больше [+] Меньше [-]microRNAs expression in relation to particulate matter exposure: A systematic review
2020
MicroRNAs (miRNAs) are a class of small, non-coding RNAs with a post-transcriptional regulatory function on gene expression and cell processes, including proliferation, apoptosis and differentiation. In recent decades, miRNAs have attracted increasing interest to explore the role of epigenetics in response to air pollution. Air pollution, which always contains kinds of particulate matters, are able to reach respiratory tract and blood circulation and then causing epigenetics changes. In addition, extensive studies have illustrated that miRNAs serve as a bridge between particulate matter exposure and health-related effects, like inflammatory cytokines, blood pressure, vascular condition and lung function. The purpose of this review is to summarize the present knowledge about the expression of miRNAs in response to particulate matter exposure. Epidemiological and experimental studies were reviewed in two parts according to the size and source of particles. In this review, we also discussed various functions of the altered miRNAs and predicted potential biological mechanism participated in particulate matter-induced health effects. More rigorous studies are worth conducting to understand contribution of particulate matter on miRNAs alteration and the etiology between environmental exposure and disease development.
Показать больше [+] Меньше [-]The bacterial microbiota in florfenicol contaminated soils: The antibiotic resistome and the nitrogen cycle
2020
Wang, Mei | Xie, Xiying | Wang, Mianzhi | Wu, Jing | Zhou, Qin | Sun, Yongxue
Soil antibiotic resistome and the nitrogen cycle are affected by florfenicol addition to manured soils but their interactions have not been fully described. In the present study, antibiotic resistance genes (ARGs) and nitrogen cycle genes possessed by soil bacteria were characterized using real-time fluorescence quantification PCR (qPCR) and metagenomic sequencing in a short-term (30 d) soil model experiment. Florfenicol significantly changed in the abundance of genes conferring resistance to aminoglycosides, β-lactams, tetracyclines and macrolides. And the abundance of Sphingomonadaceae, the protein metabolic and nitrogen metabolic functions, as well as NO reductase, nitrate reductase, nitrite reductase and N₂O reductase can also be affected by florfenicol. In this way, ARG types of genes conferring resistance to aminoglycosides, β-lactamases, tetracyclines, colistin, fosfomycin, phenicols and trimethoprim were closely associated with multiple nitrogen cycle genes. Actinobacteria, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Proteobacteria and Verrucomicrobia played an important role in spreading of ARGs. Moreover, soil physicochemical properties were important factors affecting the distribution of soil flora. This study provides a theoretical basis for further exploration of the transmission regularity and interference mechanism of ARGs in soil bacteria responsible for nitrogen cycle.
Показать больше [+] Меньше [-]Dermal exposure to particle-bound polycyclic aromatic hydrocarbons from barbecue fume as impacted by physicochemical conditions
2020
Lao, Jia-Yong | Wang, Si-Qi | Chen, Yun-Qi | Bao, Lian-Jun | Lam, Paul K.S. | Zeng, E. Y. (Eddy Y.)
Inhalation of size-dependent particle-bound polycyclic aromatic hydrocarbons (PAHs) has been extensively studied, whereas dermal absorption has not been adequately investigated. To address this knowledge gap, dermal absorption of size-dependent particle-bound PAHs was characterized through the collection of indoor air and forearm wipe samples in the setting of an indoor barbecue. The mass of size-fractioned PAHs associated with particulate matter was greater in fine particles (<1.8 μm) than in coarse particles (>1.8 μm). Gas-particle distribution of specific PAHs from barbecue fume was ascribed to both adsorption and absorption which would probably be close to equilibrium, while that from background air was dominated by absorption. Forearm-deposited amounts of particulate PAHs suggested that removal of coarse and fine particles could minimize exposure to low and high molecular-weight (MW) PAHs, respectively. Besides, the concentrations of particulate PAHs in forearms wipe were significantly correlated to their dry deposition fluxes with coarse particles, but weakly correlated to those with fine particles. This indicated that particle size would influence dermal absorption efficiency of particle-bound PAHs with fine particles prolonging dermal exposure to PAHs. Overall, higher MW particle-bound PAHs derived from barbecue fume may pose higher risk to human health by dermal absorption than lower MW PAHs.
Показать больше [+] Меньше [-]Polybrominated diphenyl ethers and alternative halogenated flame retardants in mangrove plants from Futian National Nature Reserve of Shenzhen City, South China
2020
Hu, Yongxia | Sun, Yuxin | Pei, Nancai | Zhang, Zaiwang | Li, Huawei | Wang, Weiwei | Xie, Jinli | Xu, Xiangrong | Luo, Xiaojun | Mai, Bixian
Halogenated flame retardants (HFRs) are ubiquitous in the environment, but little information is available about the bioaccumulation of HFRs in mangrove plants. In this study, three mangrove plant species were collected from Futian National Nature Reserve of Shenzhen City, South China to investigate the bioaccumulation of polybrominated diphenyl ethers (PBDEs) and several alternative halogenated flame retardants (AHFRs), including decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), hexabromobenzene (HBB), pentabromotoluene (PBT), tetrabromop-xylene (pTBX), pentabromoethylbenzene (PBEB) and dechlorane plus (DP). The mean concentrations of PBDEs, DBDPE, BTBPE, pTBX, PBT, PBEB, HBB and DP in mangrove plant species were 2010, 1870, 36.2, 18.7, 40.1, 17.8, 9.68 and 120 pg g⁻¹ dry weight, respectively. PBDEs were the dominant HFRs in mangrove plant tissues, followed by DBDPE. The relative abundance of BDE 209 in three mangrove plant tissues were much lower than those in sediments. Significant negative relationships between log root bioaccumulation factors and log Kₒw, and between log TFᵣ₋ₛ (from root to stem) and log Kₒw were observed, indicating that HFRs with low hydrophobicity were easily absorbed by mangrove roots and stems. A positive correlation between log TFₛ₋ₗ (from stem to leaf) and log Kₒw were found, suggesting that air-leaf exchange may occur in mangrove plants. This study highlights the uptake of HFRs by mangrove plants, which can be used as remediation for HFRs contamination in the environment.
Показать больше [+] Меньше [-]Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents
2020
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qₘₐₓ) of 21.6 mg g⁻¹. However, the COD of the filtrate increased from 0 to 292 mg L⁻¹ during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L⁻¹. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Показать больше [+] Меньше [-]Influence of aqueous extracts of urban airborne particulate matter on the structure and function of human serum albumin
2020
Mazuryk, Olga | Gajda-Morszewski, Przemysław | Flejszar, Monika | Łabuz, Przemysław | Eldik, Rudi van | Stochel, Grazyna | Brindell, Małgorzata
Human exposure to particulate matter (PM) originating from air pollution is inevitable since more and more population is present in large cities that are characterized by poor air quality. The impact on human health is evident and we need to intensify research regarding this problem to get molecular insight into versatile effects of chronic exposure to PM inducing organism responses and initiating the development of selected disorders. Herein, the impact of standard PM representing urban pollution on the structure and function of human serum albumin (HSA) was evaluated by the application of various analytical techniques. HSA was selected due to its high likeliness of being exposed to PM because of the abundance of this protein in blood. The studies were focused mainly on the inorganic residue of PM resulting from removing organic components by a low-temperature plasma. To mimic physiological conditions, dialysis technique was used to simulate the release of nanoparticles and ions from PM to aqueous environment under, which in turn may interact with biomolecules inside the living system. Capture of metals from the bulk suspension was found for many metals like Al, Fe, Zn and Pb in quantities of more than 1 mol of metal ions per mole of HSA. No significant structural changes of the protein upon dialysis with PM were observed, however, an increase in the thermal stabilization of the HSA structure was observed. Moreover, the interaction of HSA dialyzed in the presence of PM with selected drugs (warfarin, aspirin) was negatively affected, indicating a lower affinity of drugs towards the protein, even though only small conformational changes of the PM exposed protein were observed. Our findings point to a possible interference of air pollutants with the drugs taken by patients living in highly polluted areas.
Показать больше [+] Меньше [-]