Уточнить поиск
Результаты 561-570 из 4,309
Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles Полный текст
2017
Nazarenko, Yevgen | Fournier, Sébastien | Kurien, Uday | Rangel-Alvarado, Rodrigo Benjamin | Nepotchatykh, Oleg | Seers, Patrice | Ariya, Parisa A.
Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50–400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (−8) – (−10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.
Показать больше [+] Меньше [-]Characterisation of the phenanthrene degradation-related genes and degrading ability of a newly isolated copper-tolerant bacterium Полный текст
2017
Song, Mengke | Yang, Ying | Jiang, Longfei | Hong, Qing | Zhang, Dayi | Shen, Zhenguo | Yin, Hua | Luo, Chunling
A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster showed 96% identity with the same cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first time, high concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, benefited ryegrass growth. The best performance of PHE degradation and the highest abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with ryegrass.
Показать больше [+] Меньше [-]Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China Полный текст
2017
Chen, Weixiao | Wu, Xinyi | Zhang, Haiyun | Sun, Jianteng | Liu, Wenxin | Zhu, Lizhong | Li, Xiangdong | Tsang, Daniel C.W. | Tao, Shu | Wang, Xilong
Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth.
Показать больше [+] Меньше [-]Synthesis and characterization of fullerene modified ZnAlTi-LDO in photo-degradation of Bisphenol A under simulated visible light irradiation Полный текст
2017
Ju, Liting | Wu, Pingxiao | Lai, Xiaolin | Yang, Shanshan | Gong, Beini | Chen, Meiqing | Zhu, Nengwu
In this study, ZnAlTi layered double hydroxide (ZnAlTi-LDH) combined with fullerene (C60) was fabricated by the urea method, and calcined under vacuum atmosphere to obtain nanocomposites of C60-modified ZnAlTi layered double oxide (ZnAlTi-LDO). The morphology, structure and composition of the nanocomposites were analyzed by Scanning Electron Microscopy, High-resolution transmission electron microscopy, X-ray diffraction patterns, Fourier transform infrared and specific surface area. The UV-vis diffuse reflectance spectra indicated that the incorporation of C60 expanded the absorption of ZnAlTi-LDO to visible-light region. The photo-degradation experiment was conducted by using a series of C60 modified ZnAlTi-LDO with different C60 weight percentage to degrade Bisphenol A (BPA) under simulated visible light irradiation. In this experiment, the degradation rate of C60 modified ZnAlTi-LDO in photo-degradation of BPA under simulated visible light irradiation was over 80%. The intermediates formed in the degradation of BPA process by using LDO/C60-5% were 4-hydroxyphenyl-2-propanol, 4-isopropenylphenol and Phenol. Photogenerated holes, superoxide radical species, ·OH and singlet oxygen were considered to be responsible for the photodegradation process, among which superoxide radical species and ·OH played a predominant role in the photocatalytic reaction system. C60 modified ZnAlTi-LDO catalysts for photocatalytic reduction shows great potential in degradation of organic pollutants and environmental remediation.
Показать больше [+] Меньше [-]The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments Полный текст
2017
Crawford, Sarah E. | Lofts, Stephen | Liber, K. (Karsten)
Uranium (U) can enter aquatic environments from natural and anthropogenic processes, accumulating in sediments to concentrations that could, if bioavailable, adversely affect benthic organisms. To better predict the sorption and mobility of U in aquatic ecosystems, we investigated the sediment-solution partition coefficients (Kd) of U for nine uncontaminated freshwater sediments with a wide range of physicochemical characteristics over an environmentally relevant pH range. Test solutions were reconstituted to mimic water quality conditions and U(VI) concentrations (0.023–2.3 mg U/L) found downstream of Canadian U mines. Adsorption of U(VI) to each sediment was greatest at pH 6 and 7, and significantly reduced at pH 8. There were significant differences in pH-dependent sorption among sediments with different physicochemical properties, with sorption increasing up until thresholds of 12% total organic carbon, 37% fine fraction (≤50 μm), and 29 g/kg of iron content. The Kd values for U(VI) were predicted using the Windermere Humic Aqueous Model (WHAM) using total U(VI) concentrations, and water and sediment physicochemical parameters. Predicted Kd-U values were generally within a factor of three of the observed values. These results improve the understanding and assessment of U sorption to field sediment, and quantify the relationship with sediment properties that may influence the bioavailability and ecological risk of U-contaminated sediments.
Показать больше [+] Меньше [-]Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale Полный текст
2017
Xu, Yan | Xu, Jian | Mao, Daqing | Luo, Yi
Our previous study demonstrated that high levels of antibiotic resistance genes (ARGs) in the Haihe River were directly attributed to the excessive use of antibiotics in animal agriculture. The antibiotic residues of the Xiangjiang River determined in this study were much lower than those of the Haihe River, but the relative abundance of 16 detected ARGs (sul1, sul2 and sul3, qepA, qnrA, qnrB, qnrD and qnrS, tetA, tetB, tetW, tetM, tetQ and tetO, ermB and ermC), were as high as the Haihe River particularly in the downstream of the Xiangjiang River which is close to the extensive metal mining. The ARGs discharged from the pharmaceutical wastewater treatment plant (PWWTP) are a major source of ARGs in the upstream of the Xiangjiang River. In the downstream, selective stress of heavy metals rather than source release had a significant influence on the distinct distribution pattern of ARGs. Some heavy metals showed a positive correlation with certain ARG subtypes. Additionally, there is a positive correlation between individual ARG subtypes and heavy metal resistance genes, suggesting that heavy metals may co select the ARGs on the same plasmid of antibiotic resistant bacteria. The co-selection mechanism between specific metal and antibiotic resistance was further confirmed by these isolations encoding the resistance genotypes to antibiotics and metals. To our knowledge, this is the first study on the fate and distribution of ARGs under the selective pressure exerted by heavy metals in the catchment scale. These results are beneficial to understand the fate, and to discern the contributors of ARGs from either the source release or the selective pressure by sub-lethal levels of environmental stressors during their transport on a river catchment scale.
Показать больше [+] Меньше [-]Multigenerational effects of gold nanoparticles in Caenorhabditis elegans: Continuous versus intermittent exposures Полный текст
2017
Moon, Jongmin | Kwak, Jin Il | Kim, Shin Woong | An, Youn-Joo
Nanomaterials can become disseminated directly or indirectly into the soil ecosystem through various exposure routes. Thus, it is important to study various deposition routes of nanomaterials into the soil, as well as their toxicities. Here, we investigated the multigenerational effects of gold nanoparticles (AuNPs) on C. elegans after continuous or intermittent food intake. Following continuous exposure, significant differences were observed in the reproduction rate of C. elegans in the F2–F4 generations, which were associated with reproductive system abnormalities. However, following intermittent AuNP exposure in P0 and F3, reproductive system abnormalities and inhibited reproduction rates were observed in F2 and F3. While continuous AuNP exposure impaired reproduction from F2 to F4, intermittent exposure caused more pronounced effects on F3 worms, which may have resulted from damage during the convalescence period up through F2. These data showed the occurrence of multigenerational effects following different exposure patterns, exposure levels, and recovery periods. To our knowledge, this is the first study to demonstrate that multigenerational nano-toxicity is caused by different exposure patterns and provides insights into the unpredictable exposure scenarios of AuNPs and their adverse effects.
Показать больше [+] Меньше [-]Cladoceran offspring tolerance to toxic Microcystis is promoted by maternal warming Полный текст
2017
Lyu, Kai | Zhang, Lu | Gu, Lei | Zhu, XueXia | Wilson, Alan E. | Yang, Zhou
Elevated temperatures and nutrients can favor phytoplankton dominance by cyanobacteria, which can be toxic to zooplankton. There is growing awareness that maternal effects not only are common but can also significantly impact ecological interactions. Although climate change is broadly studied, relatively little is known regarding its influence on maternal effects in zooplankton. Given that lakes are sentinels for climate change and that elevated temperatures and nutrient pollution can favor phytoplankton dominance by toxic cyanobacteria, this study focused on elucidating the effects of maternal exposure to elevated temperatures on the tolerance of zooplankton offspring to toxic cyanobacteria in the diet. Three different maternal thermal environments were used to examine population fitness in the offspring of two cladoceran species that vary in size, including the larger Daphnia similoides and the smaller Moina macrocopa, directly challenged by toxic Microcystis. Daphnia and Moina mothers exposed to elevated temperatures produced offspring that were more resistant to Microcystis. Such findings may result from life-history optimization of mothers in different temperature environments. Interestingly, offspring from Moina fed with toxic Microcystis performed better than Daphnia offspring, which could partially explain the dominance of small cladocerans typically observed during cyanobacterial blooms. The present study emphasizes the importance of maternal effects on zooplankton resistance to cyanobacteria mediated through environmental warming and further highlights the complexities associated with the abiotic factors that influence zooplankton-cyanobacteria interactions.
Показать больше [+] Меньше [-]Cardio-respirometry disruption in zebrafish (Danio rerio) embryos exposed to hydraulic fracturing flowback and produced water Полный текст
2017
Folkerts, Erik J. | Blewett, Tamzin A. | He, Yuhe | Goss, Greg G.
Hydraulic fracturing to extract oil and natural gas reserves is an increasing practice in many international energy sectors. Hydraulic fracturing flowback and produced water (FPW) is a hyper saline wastewater returned to the surface from a fractured well containing chemical species present in the initial fracturing fluid, geogenic contaminants, and potentially newly synthesized chemicals formed in the fracturing well environment. However, information on FPW toxicological mechanisms of action remain largely unknown. Both cardiotoxic and respirometric responses were explored in zebrafish (Danio rerio) embryos after either an acute sediment-free (FPW-SF) or raw/sediment containing (FPW-S) fraction exposure of 24 and 48 h at 2.5% and 5% dilutions. A 48 h exposure to either FPW fraction in 24–72 h post fertilization zebrafish embryos significantly increased occurrences of pericardial edema, yolk-sac edema, and tail/spine curvature. In contrast, larval heart rates significantly decreased after FPW fraction exposures. FPW-S, but not FPW-SF, at 2.5% doses significantly reduced embryonic respiration/metabolic rates (MO2), while for 5% FPW, both fractions reduced MO2. Expression of select cardiac genes were also significantly altered in each FPW exposure group, implicating a cardiovascular system compromise as the potential cause for reduced embryonic MO2. Collectively, these results support our hypothesis that organics are major contributors to cardiac and respiratory responses to FPW exposure in zebrafish embryos. Our study is the first to investigate cardiac and respiratory sub-lethal effects of FPW exposure, demonstrating that FPW effects extend beyond initial osmotic stressors and verifies the use of respirometry as a potential marker for FPW exposure.
Показать больше [+] Меньше [-]Time-averaged concentrations are effective for predicting chronic toxicity of varying copper pulse exposures for two freshwater green algae species Полный текст
2017
Angel, Brad M. | Simpson, Stuart L. | Granger, Ellissah | Goodwyn, Kathryn | Jolley, Dianne F.
Intermittent, fluctuating and pulsed contaminant discharges may result in organisms receiving highly variable contaminant exposures. This study investigated the effects of dissolved copper pulse concentration and exposure duration on the toxicity to two freshwater green algae species. The effects of single copper pulses of between 1 and 48 h duration and continuous exposures (72 h) on growth rate inhibition of Pseudokirchneriella subcapitata and Chlorella sp. were compared on a time-averaged concentration (TAC) basis. Relationships were then derived between the exposure concentration and duration required to elicit different levels of toxicity expressed as inhibition concentration (IC). Continuous exposure IC50's of 3.0 and 1.9 μg/L were measured on a TAC basis for P. subcapitata and Chlorella sp., respectively. Algal growth rates generally recovered to control levels within 24–48 h of the copper pulse removal, with some treatments exhibiting significantly (p < 0.05) higher rates of cell division than controls in this recovery period. For both algae, when exposed to treatments with equivalent TACs, the continuous exposure elicited similar or slightly greater growth rate inhibition than the pulsed exposures. To elicit equivalent inhibition, the exposure concentration increased as the exposure duration decreased, and power models fitted this relationship reasonably well for both species. Water quality guideline values (WQGVs) are predominantly derived using data from continuous exposure toxicity bioassays, despite intermittent contaminant exposures often occurring in aquatic systems. The results indicate the WQGV for copper may be relaxed for pulsed exposures by a factor less than or equivalent to the TAC and still achieve a protection to these sensitive algae species.
Показать больше [+] Меньше [-]