Уточнить поиск
Результаты 571-580 из 63,319
Technical Design of Constructed Wetland unity for Municipal Wastewater Treatment and Reuse for a Green Space Irrigation: Case of the new City of Ouled Djellal –Algeria Полный текст
2022
Rokbane, Abdelmadjid | Debabeche, Mahmoud
This work investigates the possibility of using constructed wetland system for the management of municipal wastewaters with reuse strategies for the irrigation of landscapes in Ouled Djellal city of Biskra, Algeria. The design of this system was based on the characteristics (volume and physico-chemical properties) of wastewaters and the urban plan of the studied city. Results showed that studied effluent is easily biodegradable with COD/BOD5 of 1.84 (< 3), BOD5 (325 - 365 mg/L), COD (620-644 mg/L) and TSS (120-250mg/l). The peak of raw wastewater flow was found to be 32.4 m3 /h, which was used for the calculation of drip network for the landscape irrigation. The selected variant for the configuration of the CW system is HF-VF-HF, which occupies an area of 11.580 m2 and will reduce significantly the water pollution. The treated wastewater will be reused for the irrigation of landscapes via the dimensioned drip network. Results of this study showed that the proposed design for the system (treatment and reuse) would be effective in reducing pollution in the urban environment by ensuring possibility of the reuse of the treated water for irrigation. This gives also a great opportunity for using this strategy in small neighborhoods in other cities.
Показать больше [+] Меньше [-]Optimization of Detention Time for Domestic Wastewater Treatment using Phycoremediation Полный текст
2022
Moondra, Nandini | Jariwala, Namrata | Christian, Robin
In developing countries, wastewater treatment is confined to secondary systems. Hence even after treatment, wastewater effluent has a high level of nutrients which causes eutrophication and has destructive impacts on receiving bodies. Literature reveals that phycoremediation can be the best solution to address the problem faced but is time-consuming, ranging from days to weeks. Hence, the present study aimed to determine an optimum detention time for the microalgal system to treat domestic wastewater. The retention time for treatment in the study was divided into an aeration and settling periods. During the study, aeration time varied from 2 hours to 24 hours, followed by 1-hour settling period for each aeration time. Optimum detention time for microalgal treatment was obtained at 11 hours of detention time (10 hours aeration and 1-hour settling). Parameters analyzed during the study were pH, EC, TS, TSS, TDS, nitrate, phosphate, ammonia, COD and DO. However, the main focus was on nutrients (phosphate and ammonia) and organics (COD) removal while determining the optimum detention time. Maximum removal efficiency obtained for COD, ammonia and phosphate for non-filtered effluent was 75.61%, 90.63% and 83.29%, respectively. However, removal efficiency further increased for filtered effluents to 86.34%, 100% and 91.12% for COD, ammonia and phosphate, respectively. Algal treatment offers an ecologically safe and more affordable system for nutrient removal and eliminates the need for tertiary treatment.
Показать больше [+] Меньше [-]Effect of adding Arabic Gum and Zinc Oxide Nanoparticles to MBR Membranes Supported by Carbon Nanotubes for Ultrafiltration Process of Dairy Wastewater Полный текст
2022
Abdul-Majeed, Mohammed | Ahmed, Amer | Al-Furaiji, Mustafa | Ghazi, Inmar
There is great competition to improve the performance of membranes for water treatment within the scope of the research, especially the problem of biofouling on the membrane as it is related to the performance and life of the membrane. This study introduces a new mixture of hybrid bioreactor membranes that combine oxidized multi-walled carbon nanotubes (OMWCNTs) with polyethersulfone (PES) using a phase inversion method, along with equal proportions of zinc oxide nanoparticles (ZnO NPs) and Arabic gum (AG) from an acacia tree, for application in a submerged membrane bioreactor to treat wastewater for a dairy product at the College of Agriculture / Baghdad University. The results when comparing the nascent composite membranes (PES / OMWCNTs / ZnO / AG) with that of (PES / OMWCNTs) indicated that the membrane mixed with ZnO / AG has more hydrophilic (16%) As well as reducing the negative charge on the surface of the membrane almost three times, As evidenced by the water contact angle test and the zeta potential data respectively, furthermore, the atomic force microscopy analysis showed that this improved membrane showed lower values of surface roughness (by 46.8%), and more flexible normal flux values (by almost doubling), Moreover, the rate of rejection increased when the bovine serum albumin (BSA) solution was passed a percentage (13%) when compared with PES / MWCNTs membrane. Importantly, the prepared membrane also presented removal efficiency of chemical oxygen demand (COD) was significantly 37.5% higher when compared with the commercial MBR system.
Показать больше [+] Меньше [-]Analytical Solutions for Solute Transport from two-point Sources along Porous Media Flow with Spatial Dispersity involving Flexible Boundary Inputs, initial Distributions and Zero-order Productions Полный текст
2022
Tjock-Mbaga, Thomas | Ele Abiama, Patrice | Ema'a Ema'a, Jean Marie | Ben-Bolie, Germain Hubert
This study derives an analytical solution of a one-dimensional (1-D) Advection-Dispersion Equation (ADE) for solute transport with two contaminant sources incorporating the source term. Groundwater velocity is considered as a linear function of space while the dispersion as a nth power of velocity and analytical solutions are obtained for , and . The solution is derived using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). Analytical solutions are compared with numerical solutions obtained in MATLAB pedpe solver and are found to be in good agreement. The obtained solutions are illustrated for linear combination of exponential input distribution and its particular cases. The dispersion coefficient and temporal variation of the source term on the solute distribution are demonstrated graphically for the set of input data based on similar data available in the literature. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public for such problem.
Показать больше [+] Меньше [-]Heavy Metal Pollution in Soils and Vegetables from Suburban Regions of Nairobi, Kenya and their Community Health Implications Полный текст
2022
Nyika, Joan | Dinka, Megersa
This study aimed at quantifying the heavy metal levels in soils and vegetables sampled from five suburban regions of Nairobi, Kenya. Using inductively coupled plasma- mass spectrometry (ICP-MS) the metals were quantified from the samples. The assayed heavy metals including Cd, Cr, Co. Cu, Fe, Hg, Mn, Ni, Pb, Zn and the metalloid arsenic were elevated beyond the reference values in both soils and vegetables. High pollutant levels in soils were affiliated to use of industrial and domestic wastewater for irrigation, application of heavy metal containing agrochemicals and geogenic sources of the pollutants. In collard leaves, the uptake of contaminated water via the roots and subsequent accumulation in the leaves was attributable to the observed results. The total hazard quotient (THQ) and hazard index (HI) as a result of arsenic and Hg was >1 in all sampled sites and >10, respectively for both indices and heavy metals. Similarly, the cancer risk (CR) and target cancer risk (TCR) from consumption of collard was greater than the recommended levels of 10-6 and 10-4, respectively with exception of Pb. The indices were indicative of negative non-carcinogenic and carcinogenic effects of consuming the vegetables to the community of the study area. The results of the study, though preliminary, suggest the need to safeguard the health of communities in the study area to ensure that they do not consume heavy metal contaminated vegetables due to the established health effects of such pollutants.
Показать больше [+] Меньше [-]Profiling of Polycyclic Aromatic Hydrocarbons and Diagnostic Ratios of Kpite Oil Spill Impacted Site in Rivers State, Nigeria Полный текст
2021
Onojake, M. C. | Eromosele, G. O. | Osuji, Leo C.
Polycyclic Aromatic Hydrocarbon profile of Kpite oil spill impacted site in Rivers state, Nigeria was evaluated to determine the level of contamination of the soil. Four composite oil impacted soil samples were collected at different depths; surface (0-15cm) and subsurface (15-30cm) after a field reconnaissance. Extraction of the oil was carried out on the soil samples and the Polycyclic Aromatic Hydrocarbons were quantified using the Gas Chromatography- flame ionization detector. Results showed that Naphthalene was the most abundant in the range of 0.25 to 1.49 mg kg-1. Fluoranthene followed closely with concentrations in the range of 0.01 to 1.28 mg kg-1. PAHs like Benzo (k) fluoranthene, Benzo (e) pyrene, Dibenzo (a, h)anthracene, Indeno (1, 2, 3-cd) pyrene and Benzo (g, h, i) showed low concentrations of less than 0.01 indicating that strong weathering had occurred. The diagnostic ratios such as Phenanthrene/Anthracene (Phen/Anth), Benzo (a) anthracene Chrysene ((BaA)/Chry) and Fluoranthene/Pyrene (Flth/Py) and sum of chrysene/Phenanthrene ΣChry/ΣPhen were calculated and used to unravel the source of hydrocarbons. Results showed ratios of Flth/Py >1.0 and Phen/Anth ranges from 1.19 to 2.03 (< 10) which denote contamination sources, implying that the hydrocarbon sources are not just petrogenic but rather may due to contamination sources of combustion processes or the area was exposed to bush burning.
Показать больше [+] Меньше [-]A GIS-Based System for Real-Time Air Pollution Monitoring and Alerting Based on OGC Sensors Web Enablement Standards Полный текст
2021
Akbari, M. | Zahmatkesh, H. | Eftekhari, M.
Air pollution is a significant concern for both managers and disaster decision-makers in megacities. Considering the importance of having access to correct and up to date spatial data, it goes without saying that designing and implementing an environmental alerting and monitoring system is quite necessary. A standard infrastructure is needed to utilize sensor observations so as to be ready in case of critical conditions. The use of sensor web is regarded a fundamental solution to control and manage air quality in megacities. The proposed system uses the SWE framework of OGC, the reference authority in spatial data, to integrate both sensors and their observations, while utilizing them in the spatial data infrastructure. The developed system provides the capability to collect, transfer, share, and process the sensor observations, calculate the air quality condition, and report real-time critical conditions. For this purpose, a four-tier architectural structure, including sensor, web service, logical, and presentation layer, has been designed. Using defined routines and subsystems, the system applies web sensor data to a set of web services to produce alerting information. The developed system, which is assessed through sensor observation, measures the concentration of carbon monoxide, ozone, and sulfur dioxide in 20 stations in Tehran. In this way, the real-time air quality index is calculated, and critical conditions are sent through email to those users, who have been registered in the system. In addition, interpolation maps of the observations along with time diagrams of sensors’ observations can be obtained through a series of processes, carried out by the process service.
Показать больше [+] Меньше [-]Screening of hyperaccumulator plants tolerant to drought and salinity and its medicinal value evaluation for ecological reconstruction of copper silver tailings in Northwest China Полный текст
2021
Meng, C. | Song, N. P. | Yue, J. M. | Xie, L. | Zhong, Y. X. | Du, L. T.
The heavy metal pollution in soil caused by mining area development is a global problem. In order to screen the ecological restoration plants of copper silver tailings in arid and high saline alkali areas, and evaluate their economic value, nine kinds of plants naturally growing in the northwest copper silver tailings pond were selected, the enrichment and transfer characteristics of eight heavy metals by this plants was analyzed, and potential health risks for humans of plants were focused. The results showed that the heavy metals such as Cd, As, Cu, Hg and Ag are all from the open-air accumulation of tailings slag. Translocation factors of Cu, Ni and Cr by C. tragacanthoides are 2.1205, 53.1548 and 13.7622, bioconcentration factor of Cu, Ni and Cr by C. tragacanthoides are 1.8888, 7.1979, 7.4653, C. tragacanthoides is the hyperaccumulator for Cu, Ni and Cr. Hazard index in roots of S. collina, C. virgata and A. splendens to adults is more than 1, it has a potential non-cancer effects for more than half of adults, and for over 86.23% of children. Ag, Cr and As contribute the best to HI, and the cumulative contribution rate of the three elements can reach 85.59% to 96.39%. It is necessary to improve the treatment of tail slag to reduce environmental pollution, C. tragacanthoides can be considered as heavy metal remediation plants in arid and high saline copper tailing areas, but there is no medicinal value for these plants as ecological reconstruction in tailings area.
Показать больше [+] Меньше [-]Genotoxic Testing of Titanium Dioxide Nanoparticles in Far Eastern Mussels, Mytilus Trossulus Полный текст
2021
Kukla, S. | Slobodskova, V. | Mazur, A. | Chelomin, V. | Kamenev, Ya.
Manufactured nanoparticles (NP) have caused extreme concern about their ecotoxicological effects on the marine systems. In this study, we investigated the biological effects (oxidative stress and genotoxic response) of TiO2-NP at predicted environmental relevant concentrations (0.2 mg/l and 1 mg/l) on marine mussel Mytilus trossulus a dominant member of the far eastern coastal community. The results of the experiment revealed that TiO2-NP when suspended in seawater, formed agglomerates ranging from 400 nm to several μm in diameter. However, TiO2-NP caused obviously oxidative damage on the mussel as evidenced by the significant elevated levels of malondialdehyde (MDA) in the gill and digestive gland. The genotoxic potential of TiO2-NP was assessed by comet assay, which detect primary DNA damage. The gill and digestive gland cells showed significantly enhanced DNA damage for both concentrations of TiO2-NP compared to the control group. These results propose that the TiO2-NP are entering the marine coastal waters can cause genotoxic effect on mollusks and comet assay can be successfully applied as an effective tool for risk assessment of NP on the marine invertebrates. The findings of this study demonstrate that the aggregation of TiO2-NP does not reduced of NP ecotoxicity, but only changes the biological responses.
Показать больше [+] Меньше [-]Bioleaching of electronic waste Полный текст
2021
Waghmode, M. S. | Gunjal, A. B. | Patil, N. N.
Increase in advanced electronic technology leads to environmental issues related with its disposal. Electronic waste i.e., video card and random access memory were used for studying extraction of precious metals using Paenibacillus sp. Metal contaminated soil was used for the isolation of exopolysaccharide producing strains. The isolate was identified as Paenibacillus sp. based on morphological, biochemical tests and 16S rRNA sequencing. Metal content analysis of soil and e-waste was carried out using X-ray Fluorescence spectroscopy. The vanadium element was more in the soil sample which was 0.487 mg/g and in electronic waste sample copper content was more which was 250 mg/g. Paenibacillus sp. produced capsule which was observed under bright, dark field and phase contrast microscope. Scanning electron microscopy was done for the study of morphological changes of exopolysaccharide producing Paenibacillus sp. in chitin broth and on chitin agar medium with and without e-waste. The Fourier Transform Infrared Spectroscopy analysis of exopolysaccharide produced by Paenibacillus sp. grown on chitin agar and chitin agar with e-waste showed presence of different functional groups. The one step and two step bioleaching experiments were carried out for testing efficacy of biomass on metal leaching. Paenibacillus sp. showed its potential for the extraction of precious metals viz., gold, silver and copper from electronic waste. Paenibacillus sp. recovered gold (0.001%), cadmium (45%), copper (50%), iron (46%), manganese (88%), palladium (56.9%) and zinc (87.12%) by two step fermentation. The study is useful for the bioleaching of precious metals from electronic waste.
Показать больше [+] Меньше [-]