Уточнить поиск
Результаты 581-590 из 4,367
Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups Полный текст
2017
Agudelo-Castañeda, Dayana M. | Teixeira, Elba C. | Schneider, Ismael L. | Lara, Sheila Rincón | Silva, Luis F.O.
We investigated the carcinogenic and mutagenic respiratory health risks related to the exposure to atmospheric PAHs in an urban area. Our study focused in the association of these pollutants and their possible effect in human health, principally respiratory and circulatory diseases. Also, we determined a relationship between the inhalation risk of PAHs and meteorological conditions. We validated the hypothesis that in winter PAHs with high molecular weight associated to submicron particles (PM1) may increase exposure risk, especially for respiratory diseases, bronchitis and pneumonia diseases. Moreover, in our study we verified the relationship between diseases and several carcinogenic PAHs (Ind, BbkF, DahA, BaP, and BghiP). These individual PAHs contributed the most to the potential risk of exposure for inhalation of PM1.0. Even at lower ambient concentrations of BaP and DahA in comparison with individual concentrations of other PAHs associated to PM1.0. Mainly, research suggests to include carcinogenic and mutagenic PAHs in future studies of environmental health risk due to their capacity to associate to PM10. Such carcinogenic and mutagenic PAHs are likely to provide the majority of the human exposure, since they originate from dense traffic urban areas were humans congregate.
Показать больше [+] Меньше [-]Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: Processes and mechanisms Полный текст
2017
Ren, Jiao | Wang, Xiaoping | Wang, Chuanfei | Gong, Ping | Wang, Xiruo | Yao, Tandong
Biomagnification of some persistent organic pollutants (POPs) has been found in marine and freshwater food chains; however, due to the relatively short food chains in high-altitude alpine lakes, whether trophic transfer would result in the biomagnification of POPs is not clear. The transfer of various POPs, including organochlorine pesticides and polychlorinated biphenyls (PCBs), along the aquatic food chain in Nam Co Lake (4700 m), in the central Tibetan Plateau, was studied. The POPs levels in the water, sediment and biota [plankton, invertebrates and fish (Gymnocypris namensis)] of Nam Co were generally low, with concentrations comparable to those reported for the remote Arctic. The composition profiles of POPs in the fish were different from that in the water, but similar to their food. DDEs, DDDs, PCB 138, 153 and 180 displayed significant positive correlations with trophic levels, with trophic magnification factors (TMFs) ranged between 1.5 and 4.2, implying these chemicals can undergo final biomagnification along food chain. A fugacity-based dynamic bioaccumulation model was applied to the fish with localized parameters, by which the simulated concentrations were comparable to the measured data. Modeling results showed that most compounds underwent net gill loss and net gut uptake; only when the net result of the combined gut and gill fluxes would be positive, bioaccumulation could eventually occur. The net accumulation flux increased with fish age, which was caused by the continuous increase of gut uptake by aged fish. Due to the oligotrophic condition, efficient food absorption is likely the key factor that influences the gut POPs uptake. Long residence times with half-lives up to two decades were found for the higher chlorinated PCBs in Gymnocypris namensis.
Показать больше [+] Меньше [-]Application of the IEUBK model for linking Children's blood lead with environmental exposure in a mining site, south China Полный текст
2017
Zhang, Xinying | Carpenter, David O. | Song, Yŏng-jin | Chen, Ping | Qin, Yaoming | Wei, Ni-Yu | Lin, Shan-Chun
This study consisted of a site- and age-specific investigation linking children's blood lead level (BLL) to environmental exposures in a historic mining site in south China. A total of 151 children, aged 3–7 years, were included in this study. The geometric mean (GM) BLL was 8.22 μg/dl, indicating an elevated BLL. The Integrated Exposure Uptake Bio-Kinetic (IEUBK) model has proven useful at many sites for study of routes of exposure. Application of the IEUBK model to these children indicated that the GM difference between observed and predicted BLL levels was only 1.07 μg/dl. It was found that the key environmental exposure pathway was soil/dust intake, which contributed 86.3% to the total risk. Younger children had higher BLL than did older children. Therefore, of the various low risk-high benefit solutions, interventions for the children living near the site should be focused on the dust removal and soil remediation. Implementation of the China Eco-village Construction Plan and China New Rural Reconstruction Movement of the government may be a better solution.
Показать больше [+] Меньше [-]Epiphytic bryophytes as bio-indicators of atmospheric nitrogen deposition in a subtropical montane cloud forest: Response patterns, mechanism, and critical load Полный текст
2017
Shi, Xian-Meng | Song, Liang | Liu, Wen-Yao | Lu, Hua-Zheng | Qi, Jin-Hua | Li, Su | Chen, Xi | Wu, Jia-Fu | Lichuanjushi, | Wu, Chuan-Sheng
Increasing trends of atmospheric nitrogen (N) deposition due to pollution and land-use changes are dramatically altering global biogeochemical cycles. Bryophytes, which are extremely vulnerable to N deposition, often play essential roles in these cycles by contributing to large nutrient pools in boreal and montane forest ecosystems. To interpret the sensitivity of epiphytic bryophytes for N deposition and to determine their critical load (CL) in a subtropical montane cloud forest, community-level, physiological and chemical responses of epiphytic bryophytes were tested in a 2-year field experiment of N additions. The results showed a significant decrease in the cover of the bryophyte communities at an N addition level of 7.4 kg ha−1 yr−1, which is consistent with declines in the biomass production, vitality, and net photosynthetic rate responses of two dominant bryophyte species. Given the background N deposition rate of 10.5 kg ha−1yr−1 for the study site, a CL of N deposition is therefore estimated as ca. 18 kg N ha−1 yr−1. A disordered cellular carbon (C) metabolism, including photosynthesis inhibition and ensuing chlorophyll degradation, due to the leakage of magnesium and potassium and corresponding downstream effects, along with direct toxic effects of excessive N additions is suggested as the main mechanism driving the decline of epiphytic bryophytes. Our results confirmed the process of C metabolism and the chemical stability of epiphytic bryophytes are strongly influenced by N addition levels; when coupled to the strong correlations found with the loss of bryophytes, this study provides important and timely evidence on the response mechanisms of bryophytes in an increasingly N-polluted world. In addition, this study underlines a general decline in community heterogeneity and biomass production of epiphytic bryophytes induced by increasing N deposition.
Показать больше [+] Меньше [-]Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability Полный текст
2017
Matos, João T.V. | Duarte, Regina M.B.O. | Lopes, Sónia P. | Silva, Artur M.S. | Duarte, Armando C.
Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an “annual background” profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H–C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior.
Показать больше [+] Меньше [-]Free amino acid concentrations and nitrogen isotope signatures in Pinus massoniana (Lamb.) needles of different ages for indicating atmospheric nitrogen deposition Полный текст
2017
Xu, Yu | Xiao, Huayun
Free amino acid concentrations and nitrogen (N) isotopic composition in new current-year (new), mature current-year (middle-aged) and previous-year (old) Masson pine (Pinus massoniana Lamb.) needles were determined to indicate atmospheric N deposition in Guiyang (SW China). In different areas, free amino acids (especially arginine) concentrations in new and middle-aged needles were higher than in old needles, and the variation of free amino acids (especially arginine) concentrations in new and middle-aged needles was also greater than in old needles. This indicate that free amino acids in new and middle-aged needles may be more sensitive to N deposition compared to old needles. Moreover, concentrations of total free amino acids, arginine, histidine, γ-aminobutyric acid and alanine in middle-aged needles exhibited a strong relationship with N deposition (P < 0.05). Needle δ¹⁵N values showed a strong gradient from central Guiyang to the rural area, with more positive δ¹⁵N (especially in old needles) in the city center (0–5 km) and more negative δ¹⁵N (especially in old needles) in rural area (30–35 km). These suggest that N deposition in the urban center may be dominated by ¹⁵N-enriched NOx-N from traffic exhausts, while it is dominated by isotopically light atmospheric NHx-N from agriculture in rural area. Soil δ¹⁵N decreased slightly with distance from the city center, and the difference in δ¹⁵N values between the soil and needles (especially for old needles) increased significantly with the distance gradient, indicating that atmospheric N deposition may be an important N source for needles. This study provides novel evidence that free amino acids in needles and age-dependent needle δ¹⁵N values are useful indicators of atmospheric N deposition.
Показать больше [+] Меньше [-]Occurrence of Chlorotriazine herbicides and their transformation products in arable soils Полный текст
2017
Scherr, Kerstin E. | Bielská, Lucie | Kosubová, Petra | Dinisová, Petra | Hvězdová, Martina | Šimek, Zdeněk | Hofman, Jakub
Chlorotriazine herbicides (CTs) are widely used pest control chemicals. In contrast to groundwater contamination, little attention has been given to the circumstances of residue formation of parent compounds and transformation products in soils.Seventy-five cultivated floodplain topsoils in the Czech Republic were sampled in early spring of 2015, corresponding to a minimum of six months (current-use terbuthylazine, TBA) and a up to a decade (banned atrazine, AT and simazine, SIM) after the last herbicide application. Soil residues of parent compounds and nine transformation products were quantified via multiple residue analysis using liquid chromatography - tandem mass spectrometry of acetonitrile partitioning extracts (QuEChERS). Using principal component analysis (PCA), their relation to soil chemistry, crops and environmental parameters was determined.Of the parent compounds, only TBA was present in more than one sample. In contrast, at least one CT transformation product, particularly hydroxylated CTs, was detected in 89% of the sites, or 54% for banned triazines. Deethylated and bi-dealkylated SIM or AT residues were not detectable. PCA suggests the formation and/or retention of CT hydroxy-metabolite residues to be related to low soil pH, and a direct relation between TBA and soil organic carbon, and between deethyl-TBA and clay or Ca contents, respectively, the latter pointing towards distinct sorption mechanisms. The low historic application of simazine contrasted by the high abundance of its residues, and the co-occurrence with AT residues suggests the post-ban application of AT and SIM banned triazines as a permitted impurity of TBA formulations as a recent, secondary source.The present data indicate that topsoils do not contain abundant extractable residues of banned parent chlorotriazines, and are thus likely not the current source for related ground- and surface water contamination. In contrast, topsoils might pose a long-term source of TBA and CT transformation products for ground and surface water contamination.
Показать больше [+] Меньше [-]Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas Полный текст
2017
Zhang, Li′e | Huang, Daizheng | Yang, Jie | Wei, Xiao | Qin, Jian | Ou, Songfeng | Zhang, Zhiyong | Zou, Yunfeng
Studies have yet to evaluate the effects of water improvement on fluoride concentrations in drinking water and the corresponding health risks to Chinese residents in endemic fluorosis areas (EFAs) at a national level. This paper summarized available data in the published literature (2008–2016) on water fluoride from the EFAs in China before and after water quality was improved. Based on these obtained data, health risk assessment of Chinese residents' exposure to fluoride in improved drinking water was performed by means of a probabilistic approach. The uncertainties in the risk estimates were quantified using Monte Carlo simulation and sensitivity analysis. Our results showed that in general, the average fluoride levels (0.10–2.24 mg/L) in the improved drinking water in the EFAs of China were lower than the pre-intervention levels (0.30–15.24 mg/L). The highest fluoride levels were detected in North and Southwest China. The mean non-carcinogenic risks associated with consumption of the improved drinking water for Chinese residents were mostly accepted (hazard quotient < 1), but the non-carcinogenic risk of children in most of the EFAs at the 95th percentile exceeded the safe level of 1, indicating the potential non-cancer-causing health effects on this fluoride-exposed population. Sensitivity analyses indicated that fluoride concentration in drinking water, ingestion rate of water, and the exposure time in the shower were the most relevant variables in the model, therefore, efforts should focus mainly on the definition of their probability distributions for a more accurate risk assessment.
Показать больше [+] Меньше [-]Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada Полный текст
2017
Barst, Benjamin D. | Ahad, Jason M.E. | Rose, N. L. (Neil L.) | Jautzy, Josué J. | Drevnick, Paul E. | Gammon, Paul R. | Sanei, Hamed | Savard, Martine M.
We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17–25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply.
Показать больше [+] Меньше [-]Alterations in cardiovascular function by particulate matter in rats using a crossover design Полный текст
2017
Chuang, Hsiao-Chi | Lin, Yin-Jyun | Chou, Charles C.K. | Hwang, Jing-Shiang | Chen, Chu-Chih | Yan, Yuan-Horng | Hsieh, Hui-I. | Chuang, Kai-Jen | Cheng, Tsun-Jen
The objective of this study was to investigate associations between cardiovascular effects and urban ambient particle constituents using an in vivo crossover experimental design. Ambient particles were introduced to an exposure chamber for whole-body exposure of WKY rats, where the particulate matter with an aerodynamic diameter of <2.5 μm (PM2.5) mass concentration, particle number concentration, and black carbon (BC) were monitored. Organic carbon (OC), elemental carbon (EC), and soluble ions of PM2.5 were determined. In a crossover design, rats were exposed to ambient particles or high-efficiency particle arrestance (HEPA)-filtered control air for 7 days following a 7-day washout interval. The crossover exposure between particles and HEPA-filtered air was repeated 4 times. Radiotelemetric data on blood pressure (BP) [systolic BP (SBP), diastolic BP (DBP), pulse pressure (PP), and mean arterial pressure (MAP)], heart rate (HR), and heart rate viability (HRV) were subsequently obtained during the entire study. Exposure to the PM2.5 mass concentration was associated with decreases in the SBP, DBP, MAP, and HR (p < 0.05), whereas no significant changes in the BP or HR occurred with the particle number or black carbon. For HRV, the ln 5-min standard deviation of the normal-to-normal (NN) interval (LnSDNN) and the ln root mean square of successive differences in adjacent NN intervals (LnRMSSD) were positively associated with the PM2.5 mass concentration (p < 0.05). There were no significant effects of the particle number concentration or BC on HRV. Alterations in the HR were associated with OC, EC, Na⁺, Cl⁻, and NO3⁻. Cl⁻ was associated with the DBP, MAP, HR, SDNN, and RMSSD. NO3⁻ was correlated with the SBP, MAP, HR, SDNN, and RMSSD. In conclusion, we observed cardiovascular responses to ambient particles in vivo using a crossover design which can reduce animal use in future environmental studies.
Показать больше [+] Меньше [-]