Уточнить поиск
Результаты 601-610 из 4,921
PM2.5 elements at an urban site in Yangtze River Delta, China: High time-resolved measurement and the application in source apportionment
2019
Yu, Yiyong | He, Shuyan | Wu, Xilan | Zhang, Chi | Yao, Ying | Liao, Hong | Wang, Qin'geng | Xie, Mingjie
Elemental concentrations of ambient aerosols are commonly sampled over 12–24 h, and the low time resolution puts a great limit on current understanding about the temporal variations and source apportionment based on receptor models. In this work, hourly-resolved concentrations of eighteen elements in PM₂.₅ at an urban site in Nanjing, a megacity in Yangtze River Delta of east China, were obtained by using a Xact 625 ambient metals monitor from 12/12/2016 to 12/31/2017. The influence of traffic activities was clearly reflected by the spikes of crustal elements (e.g., Fe, Ca, and Si) in the morning rush hour, and the firework burning and sandstorm events during the sampling periods were tracked by sharp enrichment of Ba, K and Fe, Ca, Si, Ti in PM₂.₅, respectively. To evaluate the advantage of hourly-resolved elements data in identifying impacts from specific emission sources, positive matrix factorization (PMF) analysis was performed with the 1-h data set (PMF₁₋ₕ) and 23-h averaged data (PMF₂₃₋ₕ), respectively. The 4- and 6-factor PMF₂₃₋ₕ solutions had similar factor profiles and consistent factor contributions as the corresponding PMF₁₋ₕ solutions. However, due to the limit in inter-sample variability, PMF analysis with 23-h average data misclassified some major (e.g., K, Fe, Zn, Ca, and Si) and trace (e.g., Pb) elements in factor profiles, resulting in different absolute factor contributions between PMF₂₃₋ₕ and PMF₁₋ₕ solutions. These results suggested the use of high time-resolved data to obtain valid and robust source apportionment results.
Показать больше [+] Меньше [-]Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites
2019
Duman, Osman | Özcan, Ceren | Gürkan Polat, Tülin | Tunç, Sibel
In this study, carbon nanotube-based adsorbents, oxidized multi-walled carbon nanotube (OMWCNT) with non-magnetic property and OMWCNT-Fe₃O₄ and OMWCNT-κ-carrageenan-Fe₃O₄ nanocomposites with magnetic property, having different structural and surface properties were prepared and their adsorptive properties for the removal of toxic diquat dibromide (DQ) herbicide from water by adsorption were determined in detail. For each adsorption system, the effects of initial DQ concentration, contact time and temperature on the adsorption processes were determined. Equilibrium time was found to be 300 min for DQ solutions. OMWCNT showed faster adsorption and higher maximum adsorption capacity value than magnetic adsorbents. With increasing initial herbicide concentration from 5.43 mg.L⁻¹ to 16.3 mg.L⁻¹, the values of initial sorption rate exhibited a decrease from 29.1 mg.g⁻¹.min⁻¹ to 4.28 mg.g⁻¹.min⁻¹ for OMWCNT-DQ system, from 1.21 mg.g⁻¹.min⁻¹ to 0.823 mg.g⁻¹.min⁻¹ for OMWCNT-Fe₃O₄-DQ system and from 0.674 mg.g⁻¹.min⁻¹ to 0.612 mg.g⁻¹.min⁻¹ OMWCNT-κ-carrageenan-Fe₃O₄ system. Maximum adsorption capacity value of OMWCNT was approximately 2.8-fold higher than magnetic OMWCNT-Fe₃O₄ and 5.4-fold higher than magnetic OMWCNT-κ-carrageenan-Fe₃O₄ at 25 °C. Adsorption kinetic and isotherm data obtained for all adsorption systems were well-fitted by pseudo second-order and Langmuir models, respectively. Thermodynamic parameters indicated that the adsorption of DQ onto carbon nanotube-based adsorbents was spontaneous and endothermic process. Furthermore, OMWCNT having the highest herbicide adsorption capacity could be regenerated and reused at least five times. This study showed that carbon nanotube-based adsorbents with magnetic and non-magnetic property were of high adsorption performance for the removal of DQ from water and could be promising adsorbent materials for the efficient removal of herbicides from wastewaters.
Показать больше [+] Меньше [-]Wood ash effects on growth and cadmium uptake in Deschampsia flexuosa (Wavy hair-grass)
2019
Kindtler, Nikolaj Lunding | Ekelund, Flemming | Rønn, Regin | Kjøller, Rasmus | Hovmand, Mads | Vestergård, Mette | Christensen, Søren | Johansen, Jesper Liengaard
Wood ash recycling to forests is beneficial because it regains nutrients and prevents acidification, but wood ash application is restricted due to its cadmium (Cd) content. We question if Cd in wood ash represents a problem, since decreases in Cd bioavailability due to ash-induced pH changes may counteract increased total Cd concentration. We studied effects of wood ash (0, 3, 9 and 30 t ha−1) and lime (pH increase equivalent to the wood ash treatments) on growth and Cd uptake in Deschampsia flexuosa. After four months, we measured plant biomass and Cd accumulation, and extracted Cd from the soil using three different methods; HNO3 (total), EDTA (chelator-based) and NH4NO3 (salt-based). Wood ash and lime strongly stimulated plant growth. Cd concentration in the plant tissue decreased with wood ash and lime addition, and correlated positively with the NH4NO3 extractable fraction of Cd in the soil. In contrast, HNO3 and EDTA extracted more Cd with increased wood ash application. We conclude that wood ash amendment increases soil pH, total Cd concentration, nutrient levels and stimulates plant growth. However, it does not increase Cd accumulation in D. flexuosa, as pH-driven decreases in Cd bioavailability leads to reduced plant Cd uptake. Finally, soil bioavailable Cd is best determined using NH4NO3-extraction.
Показать больше [+] Меньше [-]Toxicity responses of different organs of zebrafish (Danio rerio) to silver nanoparticles with different particle sizes and surface coatings
2019
Liu, Haiqiang | Wang, Xinxin | Wu, Yazhou | Hou, Jing | Zhang, Siyi | Zhou, Nan | Wang, Xiangke
Silver nanoparticles (AgNPs) in aquatic ecosystems are toxic to aquatic organisms. In this study, we aimed to investigate the toxicities and molecular mechanisms of AgNPs with different surface coatings (sodium citrate and polyvinylpyrrolidone) and particle sizes (20 nm and 100 nm) in the gills, intestines, and muscles of zebrafish after 96 h of exposure. Our results indicated that the contribution of particle size to AgNP toxicity was greater than that of the surface coating. Citrate-coated AgNPs were more toxic than polyvinylpyrrolidone-coated AgNPs, and 20-nm AgNPs were more toxic than 100-nm AgNPs. The toxic effects of AgNPs to the tissues were in the order intestines > gills > muscles. Differential expression of genes with the different AgNPs confirmed that they had toxic effects in the zebrafish tissues at the molecular level. Our comprehensive comparison of the toxicities of different AgNPs to aquatic ecosystems will be helpful for further risk assessments of AgNPs.
Показать больше [+] Меньше [-]An integrated assessment and spatial-temporal variation analysis of neonicotinoids in pollen and honey from noncrop plants in Zhejiang, China
2019
Tang, Tao | Cui, Wang | Wei, Dai | Shuqing, Yu | Zhengbiao, Lu | Quan, Zhang
Recent studies have shown that neonicotinoids in pollen and honey (collected by honeybees) are likely to pose risks to honeybees. However, data on the integrated residue and spatial-temporal variation of neonicotinoids from noncrop plants, the principle sources of pollen for honey bees, are very limited, especially in China. In this study, we employed a novel assessment method based on the relative potency factor to calculate the integrated residue of seven neonicotinoids in pollen and honey samples collected from noncrop plants in 12 stations of Zhejiang province in three consecutive months. The integrated concentration of neonicotinoids (IMIRPF) ranged from no detected (ND) to 34.93 ng/g in pollen and ND to 8.51 ng/g in honey. Acetamiprid showed the highest detection frequency of 41.7%, followed by clothianidin (33.3%) and dinotefuran (22.2%). The highest IMIRPF occurred in April for stations in the fringe areas of Zhejiang province, whereas for stations in the central areas of Zhejiang province, the IMIRPF in May was relatively higher than the other two months. In terms of spatial change, the pollution variation of pollen samples in Lin'an—Tonglu—Pujiang was relative highly polluted—lightly polluted—highly polluted. For honey samples, spatial variation showed a single trend, and peak values were found in Wenzhou, which may be attributed to the local climate and farming practices. This fundamental information will be helpful to understand the effects of neonicotinoids on honeybees foraging habits.
Показать больше [+] Меньше [-]The toxicity of 2,6-dichlorobenzoquinone on the early life stage of zebrafish: A survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity
2019
Sun, Hong-Jie | Zhang, Yu | Zhang, Jing-Ying | Lin, Hongjun | Chen, Jianrong | Hong, Huachang
2,6-dichlorobenzoquinone (2,6-DCBQ), an emerging disinfection by-production, frequently occurs in reclaimed water and drinking water. However, limited information was available regarding its toxicity. To evaluate its impact, zebrafish at early life stage were exposed to 0, 10, 30, 60, 90, or 120 μg L−1 2,6-BDCQ for 72 h. Our results indicated that 2,6-BDCQ decreased zebrafish's survival rate to 65% and 44% at 90 and 120 μg L−1 treatments and increased its aberration rate to 11% and 26% at 90 μg L−1 and 120 μg L−1 treatments. Besides, 2,6-BDCQ had adverse effect on its oxidative stress (elevated superoxide dismutase activity), lipid peroxidation (increased malondialdehyde levels), DNA damage (increased 8-hydroxydeoxyguanosine contents) and apoptosis (increased caspase-3 activity). Although lower concentrations (≤60 μg L−1) of 2,6-BDCQ didn't exhibit significant effect on its survival development or lipid peroxidation of zebrafish, they induced obvious DNA damage and apoptosis occurrence. These results revealed 2,6-BDCQ caused genotoxicity and cytotoxicity to zebrafish. This study provides novel insight into 2,6-DCBQ-induced toxicity in zebrafish.
Показать больше [+] Меньше [-]A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations
2019
He, Yide | Li, Xiuwen | Jia, Dantong | Zhang, Wenming | Zhang, Tao | Yu, Yang | Xu, Yanhua | Zhang, Yongjun
Gabapentin (GPT) has become an emerging contaminant in aquatic environments due to its wide application in medical treatment all over the world. In this study, embryos of zebrafish were exposed to gabapentin at realistically environmental concentrations, 0.1 μg/L and 10 μg/L, so as to evaluate the ecotoxicity of this emergent contaminant. The transcriptomics profiling of deep sequencing was employed to illustrate the mechanisms. The zebrafish (Danio rerio) embryo were exposed to GPT from 12 hpf to 96 hpf resulting in 136 and 750 genes differentially expressed, respectively. The results of gene ontology (GO) analysis and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis illustrated that a large amount of differentially expressed genes (DEGs) were involved in the antioxidant system, the immune system and the nervous system. RT-qPCR was applied to validate the results of RNA-seq, which provided direct evidence that the selected genes involved in those systems mentioned above were all down-regulated. Acetylcholinesterase (AChE), lysozyme (LZM) and the content of C-reactive protein (CRP) were decreased at the end of exposure, which is consistent with the transcriptomics results. The overall results of this study demonstrate that GPT simultaneously affects various vital functionalities of zebrafish at early developmental stage, even at environmentally relevant concentrations.
Показать больше [+] Меньше [-]Size-fractionated particulate elements in an inland city of China: Deposition flux in human respiratory, health risks, source apportionment, and dry deposition
2019
Wang, Shenbo | Yan, Qishe | Zhang, Ruiqin | Jiang, Nan | Yin, Shasha | Ye, Huaqing
Size-resolved samples were collected using a 14-stage impactor during four seasons in Zhengzhou and analyzed for 26 elements to calculate the health risks from atmospheric particle-bound metals. High concentrations of heavy metals were observed in ultrafine (10.2 (Ni)–66.9 (Cd) ng m⁻³) or submicrometer (11.4 (Ni)–134 (Pb) ng m⁻³) mode in winter. Two size-dependent models were used to estimate the deposition of inhaled toxic metals in various regions of the human respiratory system. Results show that heavy metals deposited in the alveolar region ranged from 7.6 (As)–375 (Al) ng m⁻³ and were almost concentrated in ultrafine and fine modes. Cd (2.2–8.6) may cause accumulative non-carcinogenic health effects on children, and Cr (1.0 × 10⁻⁴–2.2 × 10⁻⁴) may lead to carcinogenic health risks for nearby residents around the sampling site. The major sources by principal component analysis that contributed to Cr and Cd in ultrafine and fine particles were coal combustion, vehicular and industrial emissions. The atmospheric dry deposition fluxes of Cr and Cd were between 0.7 and 1.9 μg m⁻² day⁻¹ calculated by a multi-step method. From the environmental and public health perspective, environmental agencies must control the emission of heavy metals in the atmosphere.
Показать больше [+] Меньше [-]Retrotransposon methylation and activity in wild fish (A. anguilla): A matter of size
2019
Pierron, Fabien | Daffe, Guillemine | Lambert, Patrick | Couture, Patrice | Baudrimont, Magalie
Understanding how organisms cope with global change is a major question in many fields of biology. Mainly, understanding the molecular mechanisms supporting rapid phenotypic changes of organisms in response to stress and linking stress-induced molecular events to adaptive or adverse outcomes at the individual or population levels remain a major challenge in evolutionary biology, ecology or ecotoxicology. In this view, the present study aimed to test (i) whether environmental factors, especially pollutants, can trigger changes in the activity of retrotransposons (RTs) in wild fish and (ii) if changes in RT DNA methylation or transcription levels can be linked to modifications at the individual level. RTs are genetic elements that have the ability to replicate and integrate elsewhere in the genome. Although RTs are mainly quiescent during normal development, they can be experimentally activated under life-threatening conditions, affecting the fitness of their host. Wild eels were collected in four sampling sites presenting differing levels of contamination. The methylation level and the transcriptional activity of two RTs and two genes involved in development and cell differentiation were analyzed in fish liver in addition to the determination of fish contaminants levels and diverse growth and morphometric indices. An up-regulation of RTs associated to lower methylation levels and lower growth indices were observed in highly contaminated fish. Our results suggest that RT activation in fish experiencing stress conditions could have both detrimental and beneficial implications, affecting fish growth but promoting resistance to environmental stressors such as pollutants.
Показать больше [+] Меньше [-]Dominance of nitrous oxide production by nitrification and denitrification in the shallow Chaohu Lake, Eastern China: Insight from isotopic characteristics of dissolved nitrous oxide
2019
Li, Qingqian | Wang, Fang | Yu, Qibiao | Yan, Weijin | Li, Xinyan | Lv, Shucong
In recent decades, most lakes in Eastern China have suffered unprecedented nitrogen pollution, making them potential “hotspots” for N2O production and emission. Understanding the mechanisms of N2O production and quantifying emissions in these lakes is essential for assessing regional and global N2O budgets and for mitigating N2O emissions. Here, we measure isotopic compositions (δ15N-N2O and δ18O-N2O) and site preference (SP) of dissolved N2O in an attempt to differentiate the relative contribution of N2O production processes in the shallow, eutrophic Chaohu Lake, Eastern China. Our results show that the bulk isotope ratios for δ15N-N2O, δ18O-N2O, and SP were 5.8 ± 3.9‰, 29.3 ± 13.4‰, and 18.6 ± 3.2‰, respectively. More than 76.8% of the dissolved N2O was produced via microbial processes. Findings suggest that dissolved N2O is primarily produced via nitrification (between 27.3% and 48.0%) and denitrification (between 31.9% and 49.5%). In addition, isotopic data exhibit significant N2O consumption during denitrification. We estimate the average N2O emission rate (27.5 ± 26.0 μg N m−2 h−1), which is higher than that from rivers in the Changjiang River network (CRN). We scaled-up the regional N2O emission (from 1.98 Gg N yr−1 to 4.58 Gg N yr−1) using a N2O emission factor (0.51 ± 0.63%) for shallow lakes in the middle and lower region of the CRN. We suggest that beneficial circumstances for promoting complete denitrification may be helpful for reducing N2O production and emissions in fresh surface waters.
Показать больше [+] Меньше [-]