Уточнить поиск
Результаты 621-630 из 4,291
Endoplasmic reticulum (ER) stress and cAMP/PKA pathway mediated Zn-induced hepatic lipolysis
2017
Song, Yu–Feng | Hogstrand, Christer | Wei, Chuan-Chuan | Wu, Kun | Pan, Ya–Xiong | Luo, Zhi
The present study was performed to determine the effect of Zn exposure influencing endoplasmic reticulum (ER) stress, explore the underlying molecular mechanism of Zn-induced hepatic lipolysis in a fish species of significance for aquaculture, yellow catfish Pelteobagrus fulvidraco. We found that waterborne Zn exposure evoked ER stress and unfolded protein response (UPR), and activated cAMP/PKA pathway, and up-regulated hepatic lipolysis. The increase in ER stress and lipolysis were associated with activation of cAMP/PKA signaling pathway. Zn also induced an increase in intracellular Ca2+ level, which could be partially prevented by dantrolene (RyR receptor inhibitor) and 2-APB (IP3 receptor inhibitor), demonstrating that the disturbed Ca2+ homeostasis in ER contributed to ER stress and dysregulation of lipolysis. Inhibition of ER stress by PBA attenuated UPR, inhibited the activation of cAMP/PKA pathway and resulted in down-regulation of lipolysis. Inhibition of protein kinase RNA-activated-like ER kinase (PERK) by GSK2656157 and inositol-requiring enzyme (IRE) by STF-083010 differentially influenced Zn-induced changes of lipolytic metabolism, indicating that PERK and IRE pathways played different regulatory roles in Zn-induced lipolysis. Inhibition of PKA by H89 blocked the Zn-induced activation of cAMP/PKA pathway with a concomitant inhibition of ER stress-mediated lipolysis. Taken together, our findings highlight the importance of the ER stress–cAMP/PKA axis in Zn-induced lipolysis, which provides new insights into Zn toxicology in fish and probably in other vertebrates.
Показать больше [+] Меньше [-]24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L
2017
Ahammed, Golam Jalal | He, Bei-Bei | Qian, Xiang-Jie | Zhou, Yan-Hong | Shi, Kai | Zhou, Jie | Yu, Jing-Quan | Xia, Xiao-Jian
Environmental pollution by organic pollutants (OPs) has become a global concern due to its detrimental effects on the environment and human health. As plants are used to remediate contaminated sites, understanding the responses of plants to various OPs and fortification of plant tolerance are of great significance. In this work, we studied the biochemical and molecular responses of cucumber plants to three well-known OPs, 2,4,6-trichlorophenol, chlorpyrifos and oxytetracycline in the absence or presence of 24-epibrassinolide (EBR), a potent regulator of plant growth and stress tolerance. The results showed that the selected three OPs retarded root elongation; however, the phytotoxic effects of OPs were attenuated by exogenous EBR. OPs induced accumulations of both hydrogen peroxide (H2O2) and nitric oxide (NO) in root tips and resulted in an increased malondialdehyde (MDA) content, an indicator of membrane lipid peroxidation. Exogenous EBR reduced accumulations of H2O2, NO and MDA in the roots by increasing the expression of antioxidant and detoxification genes and the activities of the corresponding enzymes. Intriguingly, EBR not only promoted the activities of glutathione S-transferase and glutathione reductase, but also increased the content of reduced glutathione without altering the content of oxidized glutathione, which resulted in a reduced redox state under OPs stress. Furthermore, EBR increased the free radical scavenging capacity, flavonoid content and the activity and transcription of secondary metabolism related enzymes. Our results suggest that EBR treatment may fortify secondary metabolism to enhance antioxidant capacity in response to OPs treatment, which might have potential implication in phytoremediation of OPs.
Показать больше [+] Меньше [-]Intake, distribution, and metabolism of decabromodiphenyl ether and its main metabolites in chickens and implications for human dietary exposure
2017
Wang, Jing-Xin | Bao, Lian-Jun | Luo, Pei | Shi, Lei | Wong, Charles S. | Zeng, E. Y. (Eddy Y.)
Diet is considered as the most important human exposure pathway for polybrominated diphenyl ethers (PBDEs). Metabolism and accumulation patterns of PBDEs in different growth periods of chickens are helpful for evaluating human dietary exposure, but such information is scarce. In this study, female chickens were fed with food spiked with BDE-209 at 85 mg kg⁻¹, and the intake, accumulation, and excretion of BDE-209 and its main metabolites in various tissues were examined. Concentrations of BDE-209 in chicken tissues increased over time in a tissue-specific manner; they were the greatest in liver and generally the lowest in breast meat during the entire exposure period. The kinetic patterns were dependent on both growth-dilution effects and accumulated concentrations of BDE-209. Tissue concentrations of ∑8PBDE (sum of BDE-28, 47, 99, 100, 153, 154, 183, and 209) followed the sequence of liver > blood > skin > intestine > stomach > leg meat > breast meat. Different tissue partition coefficients and perfusion rates for blood may have resulted in different PBDE concentrations in tissues. The absorption efficiency of BDE-209 in chicken tissues followed the sequence of liver (0.15 ± 0.032%) > skin (0.14 ± 0.038%) > intestine (0.071 ± 0.021%) > breast meat (0.062 ± 0.020%) > leg meat (0.059 ± 0.016%) > stomach (0.021 ± 0.0095%), likely due in part to facilitated absorption of BDE-209 by transport proteins (P-glycoproteins). On average, 9.3 ± 1.7% of BDE-209 was excreted in feces. Estimated human average dietary intake via the consumption of chicken tissues of ∑8PBDE for adults and children was 319 and 1380 ng day⁻¹ for liver, 211 and 632 ng day⁻¹ for leg meat, and 104 and 311 ng day⁻¹ for breast meat from the contaminated group. Liver clearly poses the highest exposure risk for human consumption, particularly if chickens are fed with contaminated feed.
Показать больше [+] Меньше [-]Atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai: Temporal and spatial variation, and global comparison
2017
Feng, Daolun | Liu, Ying | Gao, Yi | Zhou, Jinxing | Zheng, Lirong | Qiao, Gang | Ma, Liming | Lin, Zhifen | Grathwohl, Peter
Atmospheric deposition leads to accumulation of atmospheric polycyclic aromatic hydrocarbons (PAHs) on urban surfaces and topsoils. To capture the inherent variability of atmospheric deposition of PAHs in Shanghai's urban agglomeration, 85 atmospheric bulk deposition samples and 7 surface soil samples were collected from seven sampling locations during 2012–2014. Total fluxes of 17 PAHs were 587-32,300 ng m−2 day−1, with a geometric mean of 2600 ng m−2 day−1. The deposition fluxes were categorized as moderate to high on a global scale. Phenanthrene, fluoranthene and pyrene were major contributors. The spatial distribution of deposition fluxes revealed the influence of urbanization/industrialization and the relevance of local emissions. Meteorological conditions and more heating demand in cold season lead to a significant increase of deposition rates. Atmospheric deposition is the principal pathway of PAHs input to topsoils and the annual deposition load in Shanghai amounts to ∼4.5 tons (0.7 kg km−2) with a range of 2.5–10 tons (0.4–1.6 kg km−2).
Показать больше [+] Меньше [-]Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model
2017
Chen, Wen-Qian | Wang, Wen-Xiong | Tan, Qiao-Guo
The effects of salinity on metal toxicity are complex: not only affecting metal bioaccumulation, but also altering the physiology and sensitivity of organisms. In this study, we used a toxicokinetic-toxicodynamic (TK-TD) model to separate and quantify the dual effects of salinity on copper (Cu) toxicity in a euryhaline clam Potamocorbula laevis. The toxicokinetics of Cu was determined using the stable isotope 65Cu as a tracer at concentrations (10–500 μg L−1) realistic to contaminated environments and at salinities ranging from 5 to 30. At low Cu concentrations (ca. 10 μg L−1), Cu bioaccumulation decreased monotonically with salinity, and the uptake rate constant (ku, 0.546 L g−1 h−1 to 0.213 L g−1 h−1) fitted well with an empirical equation, ku = 1/(1.35 + 0.116·Salinity), by treating salinity as a pseudo-competitor. The median lethal concentrations (LC50s) of Cu were 269, 224, and 192 μg L−1 at salinity 5, 15, and 30, respectively. At high Cu concentrations (ca. 500 μg L−1), elevating salinity were much less effective in decreasing Cu bioaccumulation; whereas Cu toxicity increased with salinity. The increased toxicity could be explained by the increases in Cu killing rates (kks), which were estimated to be 0.44–2.08 mg μg−1 h−1 and were presumably due to the osmotic stress caused by the deviation from the optimal salinity of the clams. The other toxicodynamic parameter, internal threshold concentration (CIT), ranged from 79 to 133 μg−1 g−1 and showed no clear trend with salinity.
Показать больше [+] Меньше [-]Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation
2017
Brackx, Melanka | Van Wittenberghe, Shari | Verhelst, Jolien | Scheunders, Paul | Samson, Roeland
In urban areas, the demand for local assessment of air quality is high. The existing monitoring stations cannot fulfill the needs. This study assesses the potential of hyperspectral tree leaf reflectance for monitoring traffic related air pollution. Hereto, 29 Carpinus betulus saplings were exposed to an environment with either high or low traffic intensity. The local air quality was estimated by leaf saturation isothermal remanent magnetization (SIRM). The VIS-NIR leaf reflectance spectrum (350–2500 nm) was measured using a handheld AgriSpec spectroradiometer (ASD Inc.). Secondary, leaf chlorophyll content index (CCI), specific leaf area (SLA) and water content (WC) were determined. To gain insight in the link between leaf reflectance and air quality, the correlation between SIRM and several spectral features was determined. The spectral features that were tested are plain reflectance values, derivative of reflectance, two-band indices using the NDVI formula and PCA components. Spectral reflectance for wavelength bands in the red and short wave IR around the red edge, were correlated to SIRM with Pearson correlations of up to R = −0.85 (R² = 0.72). Based on the spectral features and combinations thereof, binomial logistic regression models were trained to classify trees into high or low traffic pollution exposure, with classification accuracies up to 90%. It can be concluded that hyperspectral reflectance of C. betulus leaves can be used to detect different levels of air pollution within an urban environment.
Показать больше [+] Меньше [-]Arthropod communities in a selenium-contaminated habitat with a focus on ant species
2017
De La Riva, Deborah G. | Hladun, Kristen R. | Vindiola, Beatriz G. | Trumble, John T.
The selenium contamination event that occurred at Kesterson Reservoir (Merced Co., CA) during the 1970–80s is a frequently cited example for the negative effects of contamination on wildlife. Despite the importance of arthropods for ecosystem services and functioning, relatively little information is available as to the impacts of pollution on arthropod community dynamics. We conducted surveys of the arthropod community present at Kesterson Reservoir to assess the impacts of selenium contamination on arthropod diversity, with a focus on ant species richness, composition and density. Trophic groups were compared to determine which arthropods were potentially receiving the greatest selenium exposure. Plant samples were analyzed to determine the selenium content by site and by location within plant. Soil concentrations varied across the study sites, but not across habitat types. Topsoil contained higher levels of selenium compared to core samples. Plants contained similar concentrations of selenium in their leaves, stems and flowers, but flowers contained the greatest range of concentrations. Individuals within the detritivores/decomposers and predators accumulated the greatest concentrations of selenium, whereas nectarivores contained the lowest concentrations. Species composition differed across the sites: Dorymyrmex bicolor was located only at the site containing the greatest soil selenium concentration, but Solenopsis xyloni was found at most sites and was predominant at six of the sites. Selenium concentrations in ants varied by species and collection sites. Nest density was also found to differ across sites, but was not related to soil selenium or any of the habitat variables measured in our study. Selenium was not found to impact species richness, but was a significant variable for the occurrence of two out of the eight native species identified.
Показать больше [+] Меньше [-]Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups
2017
Agudelo-Castañeda, Dayana M. | Teixeira, Elba C. | Schneider, Ismael L. | Lara, Sheila Rincón | Silva, Luis F.O.
We investigated the carcinogenic and mutagenic respiratory health risks related to the exposure to atmospheric PAHs in an urban area. Our study focused in the association of these pollutants and their possible effect in human health, principally respiratory and circulatory diseases. Also, we determined a relationship between the inhalation risk of PAHs and meteorological conditions. We validated the hypothesis that in winter PAHs with high molecular weight associated to submicron particles (PM1) may increase exposure risk, especially for respiratory diseases, bronchitis and pneumonia diseases. Moreover, in our study we verified the relationship between diseases and several carcinogenic PAHs (Ind, BbkF, DahA, BaP, and BghiP). These individual PAHs contributed the most to the potential risk of exposure for inhalation of PM1.0. Even at lower ambient concentrations of BaP and DahA in comparison with individual concentrations of other PAHs associated to PM1.0. Mainly, research suggests to include carcinogenic and mutagenic PAHs in future studies of environmental health risk due to their capacity to associate to PM10. Such carcinogenic and mutagenic PAHs are likely to provide the majority of the human exposure, since they originate from dense traffic urban areas were humans congregate.
Показать больше [+] Меньше [-]External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs
2017
Yin, Hao | Pizzol, Massimo | Xu, Linyu
Some cities in China are facing serious air pollution problems including high concentrations of particles, SO2 and NOx. Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C0 = 35 μg/m3) to 0.9% (VSL, WHO guideline: C0 = 10 μg/m3) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C0). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments.
Показать больше [+] Меньше [-]Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes
2017
He, Xu | Mitrano, Denise M. | Nowack, Bernd | Bahk, Yeon Kyoung | Figi, Renato | Schreiner, Claudia | Bürki, Melanie | Wang, Jing
Material flow studies have shown that a large fraction of the engineered nanoparticles used in products end up in municipal waste. In many countries, this municipal waste is incinerated before landfilling. However, the behavior of engineered nanoparticles (ENPs) in the leachates of incinerated wastes has not been investigated so far. In this study, TiO2 ENPs were spiked into synthetic landfill leachates made from different types of fly ash from three waste incineration plants. The synthetic leachates were prepared by standard protocols and two types of modified procedures with much higher dilution ratios that resulted in reduced ionic strength. The pH of the synthetic leachates was adjusted in a wide range (i.e. pH 3 to 11) to understand the effects of pH on agglomeration. The experimental results indicated that agglomeration of TiO2 in the synthetic landfill leachate simultaneously depend on ionic strength, ionic composition and pH. However, when the ionic strength was high, the effects of the other two factors were masked. The zeta potential of the particles was directly related to the size of the TiO2 agglomerates formed. The samples with an absolute zeta potential value < 10 mV were less stable, with the size of TiO2 agglomerates in excess of 1500 nm. It can be deduced from this study that TiO2 ENPs deposited in the landfill may be favored to form agglomerates and ultimately settle from the water percolating through the landfill and thus remain in the landfill.
Показать больше [+] Меньше [-]