Уточнить поиск
Результаты 621-630 из 7,292
Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy Полный текст
2022
Zubair, Muhammad | Azeem, Muhammad | Mumtaz, Rabia | Younas, Madiha | Adrees, Muhammad | Zubair, Errum | K̲h̲ālid, ʻAbdulláh | Hafeez, Farhan | Rizwan, Muhammad | Ali, Shafaqat
Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO₃ were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV–vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV–vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20–50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.
Показать больше [+] Меньше [-]Uncertainty analysis of facemasks in mitigating SARS-CoV-2 transmission Полный текст
2022
Liu, Fan | Qian, Hua
In the context of global spread of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2), there is a controversial issue on whether the use of facemasks is promising to control or mitigate the COVID-19 transmission. This study modeled the SARS-CoV-2 transmission process and analyzed the ability of surgical mask and N95 in reducing the infection risk with Sobol's analysis. Two documented outbreaks of COVID-19 with no involvers wearing face masks were reviewed in a restaurant in Guangzhou (China) and a choir rehearsal in Mount Vernon (USA), suggesting that the proposed model can be well validated when airborne transmission is assumed to dominate the virus transmission indoors. Subsequently, the uncertainty analysis of the protection efficiency of N95 and surgical mask were conducted with Monte Carlo simulations, with three main findings: (1) the uncertainty in infection risk is primarily apportioned by respiratory activities, virus dynamics, environment factors and individual exposures; (2) wearing masks can effectively reduce the SARS-CoV-2 infection risk to an acceptable level (< 10⁻³) by at least two orders of magnitude; (3) faceseal leakage can reduce protection efficiency by approximately 4% when the infector is speaking or coughing, and by approximately 28% when the infector is sneezing. This work indicates the effectiveness of non-pharmaceutical interventions during the pandemic, and implies the importance of the synergistic studies of medicine, environment, social policies and strategies, etc., on reducing hazards and risks of the pandemic.
Показать больше [+] Меньше [-]Status and prospects of atmospheric microplastics: A review of methods, occurrence, composition, source and health risks Полный текст
2022
Xu, An | Shi, Mingming | Xing, Xinli | Su, Yewang | Li, Xingyu | Liu, Weijie | Mao, Yao | Hu, Tianpeng | Qi, Shihua
The global pollution of microplastics (MPs) has attracted widespread attention, and the atmosphere was an indispensable media for the global transmission of MPs. With the growing awareness of MPs, atmospheric microplastics (AMPs) have been proposed as a new topic in recent years. Compared with the extensive studies on MPs in Marine and terrestrial environments, the studies of AMPs remain limited. In this study, sampling and analysis methods, occurrence, source analysis and health risk of AMPs were summarized and discussed. According to the different sampling methods, AMPs can be divided into suspension microplastics (SAMPs) and deposition microplastics (DAMPs). Previous studies have shown that SAMPs and DAMPs differ in composition and abundance, with SAMPs generally having a higher fraction of fragments. The mechanism of the migration of AMPs between different media was not clear yet. We further collated global data on the composition characteristics of MPs in soil and fresh water, which showed that the fragment MPs in soil and fresh water was higher than that in the atmosphere. Polymers in soil and fresh water were mainly PP and PE, while AMPs in the atmosphere were mainly PET. The shape composition of the MPs in both atmospheric and freshwater systems suggests that there may be the same dominant factor. The transport of AMPs and source apportionment were the important issues of current research, but both of them were at the initial stage. Therefore, AMPs needs to be further studied, especially for the source and fate, which would be conducive to understand the global distribution of AMPs. Furthermore, a standardized manual on sampling and processing of AMPs was also necessary to facilitate the comparative analysis of data between different studies and the construction of global models.
Показать больше [+] Меньше [-]Effects of manganese, iron and sulfur geochemistry on arsenic migration in the estuarine sediment of a small river in Xiamen, Southeast China Полный текст
2022
Cai, Yu | Wang, Bo | Pan, Feng | Fu, Yuyao | Guo, Weidong | Guo, Zhanrong | Liu, Huatai
The geochemistry of iron (Fe), manganese (Mn) and sulfur (S) and their effects on arsenic (As) mobility in the mudflats of small river estuaries remain unclear. Here, diffusive gradient in thin films (DGT) and high-resolution dialysis (HR-Peeper) techniques combined with a sequential extraction procedure (BCR) were employed to investigate As, Fe, Mn and S geochemistry in the mudflat of the Jiuxi River estuary, Southeast China. Grain size analysis indicated that fine-grained particles were likely to be deposited in the estuarine intertidal zone and coastal area. DGT and HR-Peeper results revealed that in the estuary and coastal area, the dissolved As in sediment in summer was controlled by Mn geochemistry, which includes not only the release of As through Mn/Fe reduction but also the stabilization of dissolved As in pore water. This stabilization of dissolved As may due to the formation of As–Mn-OM complexes. In winter, the significant positive correlations between DGT-Fe, DGT-Mn, DGT-As and DGT-S indicated that sulfate reduction was the start of As mobilization in sediment in winter. In both the estuary and the coastal area, the easily reducible Fe, Mn and As contents in intertidal sediment were higher than those in the subtidal zone. Combined with the As flux across the sediment-overlying water interface (SWI), these phenomena suggested that As in subtidal sediment diffused into overlying water and that As in overlying water tended to accumulate in the intertidal sediment. The total organic carbon content (TOC) and DGT results in the lower reach, estuary and coastal areas indicated that organic matter is the controlling factor of Fe/Mn reduction, sulfate reduction and As mobilization. The BCR test results showed higher reactive fraction contents of Fe, Mn and As in winter sediment, which threaten the overlying water quality.
Показать больше [+] Меньше [-]Dermal uptake: An important pathway of human exposure to perfluoroalkyl substances? Полный текст
2022
Ragnarsdóttir, Oddný | Abdallah, Mohamed Abou-Elwafa | Harrad, Stuart
Per- and polyfluoroalkyl substances (PFAS) have been produced and used in a broad range of products since the 1950s. This class, comprising of thousands of chemicals, have been used in many different products ranging from firefighting foam to personal care products and clothes. Even at relatively low levels of exposure, PFAS have been linked to various health effects in humans such as lower birth weight, increased serum cholesterol levels, and reduced antibody response to vaccination. Human biomonitoring data demonstrates ubiquitous exposure to PFAS across all age groups. This has been attributed to PFAS-contaminated water and dietary intake, as well as inadvertent ingestion of indoor dust for adults and toddlers. In utero exposure and breast milk have been indicated as important exposure pathways for foetuses and nursing infants. More recently, PFAS have been identified in a wide range of products, many of which come in contact with skin (e.g., cosmetics and fabrics). Despite this, few studies have evaluated dermal uptake as a possible route for human exposure and little is known about the dermal absorption potential of different PFAS. This article critically investigates the current state-of-knowledge on human exposure to PFAS, highlighting the lack of dermal exposure data. Additionally, the different approaches for dermal uptake assessment studies are discussed and the available literature on human dermal absorption of PFAS is critically reviewed and compared to other halogenated contaminants, e.g., brominated flame retardants and its implications for dermal exposure to PFAS. Finally, the urgent need for dermal permeation and uptake studies for a wide range of PFAS and their precursors is highlighted and recommendations for future research to advance the current understanding of human dermal exposure to PFAS are discussed.
Показать больше [+] Меньше [-]Early pregnancy PM2.5 exposure and its inorganic constituents affect fetal growth by interrupting maternal thyroid function Полный текст
2022
Zhou, Yuhan | Zhu, Qingqing | Wang, Pengpeng | Li, Jialin | Luo, Ranran | Chao, Winston | Zhang, Liyi | Shi, Huijing | Zhang, Yunhui
Early pregnancy is crucial for fetal growth. Maternal thyroid hormone is critical for fetal growth and can be disturbed under exogenous exposure. However, it's uncertain whether exposure to PM₂.₅ and inorganic constituents during early pregnancy can affect TH and fetal growth. We focused on the associations of early-pregnancy PM₂.₅ and inorganic constituents with fetal growth and maternal THs. PM₂.₅ concentration was estimated using a satellite-based spatiotemporal model. Fetal biparietal diameter (BPD), head circumference (HC), femur length (FL), and humerus length (HL) were measured by ultrasonography at median 15.6, 22.2, and 33.1 gestational weeks. Levels of 28 PM₂.₅ constituents were measured in a sub-group of 329 pregnancies. Maternal serum free thyroxine (fT4), free triiodothyronine, and thyroid-stimulating hormone levels were measured at 14 weeks of gestation. Mixed-effect models and multiple linear regression were applied to evaluate the associations of PM₂.₅ and its constituents with fetal growth measures. Mediation analysis was used to examine the mediating role of the THs. Results showed that each 10 μg/m³ increase in PM₂.₅ was associated with 0.20 mm reductions in BPD (95%CI: 0.33, −0.01), 0.27 mm decreases in FL (95%CI: 0.40, −0.13), and 0.36 decreases in HL (95%CI: 0.49, −0.23). Per 10 μg/m³ increment in PM₂.₅ was correlated with 5.82% decreases in the fT4 level (95% CI: 8.61%, −2.96%). FT4 accounted for 14.3% of PM₂.₅ exposure-induced change in BPD at first follow-up. Al (β = −2.91, 95%CI: 5.17, −0.66), Si (β = −1.20, 95%CI: 2.22, −0.19), K (β = −3.09, 95%CI: 5.41, −0.77), Mn (β = −47.20, 95%CI: 83.68, −10.79) and Zn (β = −3.02, 95%CI: 5.55, −0.49) were associated with decreased fetal BPD, especially in first follow-up. Zn (β = −38.12%, 95% CI: 58.52%, −8.61%) was also associated with decreased fT4 levels. Overall, early pregnancy exposure to PM₂.₅ and its constituents was associated with fetal growth restriction and decreased maternal fT4 levels might mediate the effect of PM₂.₅.
Показать больше [+] Меньше [-]Cross-sectional and longitudinal relationships between urinary 1-bromopropane metabolite and pulmonary function and underlying role of oxidative damage among urban adults in the Wuhan-Zhuhai cohort in China Полный текст
2022
Wang, Bin | Fan, Lieyang | Yang, Shijie | Zhou, Min | Mu, Ge | Liu, Wei | Yu, Linling | Yang, Meng | Cheng, Man | Wang, Xing | Qiu, Weihong | Shi, Tingming | Chen, Weihong
1-bromopropane is a US Environmental Protection Agency-identified significant hazardous air pollutant with concerned adverse respiratory effect. We aimed to investigate the relationship between 1-bromopropane exposure and pulmonary function and the underlying role of oxidative damage, which all remain unknown. Pulmonary function and urinary biomarkers of 1-bromopropane exposure (N-Acetyl-S-(n-propyl)-L-cysteine, BPMA) and oxidative damage to DNA (8-hydroxy-deoxyguanosine, 8-OHdG) and lipid (8-iso-prostaglandin-F2α, 8-iso-PGF2α) were measured for 3259 Chinese urban adults from the Wuhan-Zhuhai cohort. The cross-sectional relationship of BPMA with pulmonary function and the joint relationship of BPMA and 8-OHdG or 8-iso-PGF2α with pulmonary function were investigated by linear mixed models. The mediating roles of 8-OHdG and 8-iso-PGF2α were evaluated by mediation analysis. Additionally, a panel of 138 subjects was randomly convened from the same cohort to evaluate the stability of BPMA repeatedly measured in urine samples collected over consecutive three days and intervals of one, two, and three years, and to estimate the longitudinal relationship of BPMA with pulmonary function change in three years. We found each 3-fold increase in BPMA was cross-sectionally related to FVC and FEV₁ reductions by 29.88-mL and 25.67-mL, respectively (all P < 0.05). Joint relationship of BPMA and 8-OHdG rather than 8-iso-PGF2α with reduced pulmonary function was observed. Moreover, 8-OHdG significantly mediated 9.44% of the BPMA-related FVC reduction. Findings from the panel revealed a fair to excellent stability (intraclass correlation coefficient: 0.43–0.79) of BPMA in repeated urines collected over a period of three years. Besides, BPMA was longitudinally related to pulmonary function reduction in three years: compared with subjects with persistently low BPMA level, those with persistently high BPMA level had 79.08-mL/year and 49.80-mL/year declines in FVC and FEV₁, respectively (all P < 0.05). Conclusively, 1-bromopropane exposure might impair pulmonary function of urban adult population, and oxidative DNA damage might be a potential mechanism underlying 1-bromopropane impairing pulmonary function especially FVC.
Показать больше [+] Меньше [-]Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line Полный текст
2022
Du, Ying | Yang, Yongyong | Wang, Yue | Wu, Nana | Tao, Junyan | Yang, Guanghong | You, Mingdan
Neurodevelopmental exposure to chlorpyrifos (CPF) could increase risks for neurological disorders, such as autism spectrum disorder, cognitive impairment, or attention deficit hyperactivity disorder. The potential involvement of microglia reactive to inflammatory stimuli in these neurological disorders has been generally reported. However, the concrete effects and potential mechanisms of microglia dysfunction triggered by developmental CPF exposure remain unclear. Therefore, we established mouse and human embryonic microglial cells (HMC3 cell) models of developmental CPF exposure to evaluate the effects of developmental CPF exposure on neuroinflammation and underlying mechanisms. The results showed that developmental exposure to CPF enhanced the expression of Iba1 in hippocampus. CPF treatment increased inflammatory cytokines levels and TSPO expression in hippocampus and HMC3 cells. The levels of necroptosis and necroptosis-related signaling RIPK/MLKL were increased in hippocampus and HMC3 cells following CPF exposure. Furthermore, the expression of TLR4/TRIF signaling was increased in hippocampus and HMC3 cells subjected to CPF exposure. Notably, the increased levels of TLR4/TRIF signaling, RIPK/MLKL signaling, necroptosis and pro-inflammatory cytokines induced by CPF treatment were remarkably inhibited by TAK-242 (a specific TLR4 inhibitor). Additionally, the necroptosis and pro-inflammatory cytokines production induced by CPF treatment were significantly relieved by Nec-1 (a specific RIPK1 inhibitor). In general, the above results suggested that activated microglia in hippocampus subjected to developmental CPF exposure underwent RIPK1/MLKL-mediated necroptosis regulated by TLR4/TRIF signaling.
Показать больше [+] Меньше [-]Tire microplastics exposure in soil induces changes in expression profile of immune-related genes in terrestrial crustacean Porcellio scaber Полный текст
2022
Dolar, Andraž | Drobne, Damjana | Narat, Mojca | Jemec Kokalj, Anita
Tire particles pose a potential threat to terrestrial organisms because they are deposited in large quantities in the soil by tire wear abrasion, and moreover their chemical complexity poses an additional risk. Microplastics can affect several physiological processes in organisms, including those related to immunity. Therefore, we investigated the expression profile of selected immune-related genes (MnSod, Manganese Superoxide dismutase; Cat, Catalase; CypG, Cyclophilin G; Nos, Nitric oxide synthase; Ppae2a, Prophenoloxidase-activating enzyme 2a; Dscam, Down syndrome cell adhesion molecule; Myd88, Myeloid-differentiation factor 88; Toll4, Toll-like receptor 4; Mas-like, Masquerade-like protein) in haemocytes and the digestive gland hepatopancreas of terrestrial crustacean Porcellio scaber after two different time exposures (4 and 14 days) to tire particles in soil. Our results reveal for the first time the response of P. scaber after microplastic exposure at the transcriptome level. We observed time- and tissue-dependent changes in the expression of the analysed genes, with more pronounced alterations in haemocytes after 14 days of exposure. Some minor changes were also observed in hepatopancreas after 4 days. Changes in the expression profile of the analysed genes are a direct indication of a modulated immune status of the test organism, which, however, does not represent an adverse effect on the test organism under the given conditions. Nevertheless, the question remains whether the observed change in immune status affects the immunocompetence of the test organism.
Показать больше [+] Меньше [-]Inhibition of PCDD/Fs in a full-scale hazardous waste incinerator by the quench tower coupled with inhibitors injection Полный текст
2022
He, Fengyu | Peng, Yaqi | Wang, Fei | Dong, Yuhang | Chen, Ken | Lu, Shengyong
The control of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the flue gas in hazardous waste incinerators (HWIs) is an intractable problem. To figure out the formation mechanism of PCDD/Fs and reduce the emission, a field study was carried out in a full-scale HWI. Ca(OH)₂ & (NH₄)H₂PO₄ or CH₄N₂S & (NH₄)H₂PO₄ were injected into the quench tower, and the detailed inhibition effect on PCDD/Fs formation by the inhibitors coupled with quench tower was studied. Gas and ash samples were collected to analyze PCDD/Fs. XPS, EDS characterization and Principal component analysis were adopted to further analyze the de novo and precursors synthesis. The PCDD/Fs emissions reduced from 0.135 ng I-TEQ/Nm³ to 0.062 or 0.025 ng I-TEQ/Nm³ after the injection of Ca(OH)₂ & (NH₄)H₂PO₄ or CH₄N₂S & (NH₄)H₂PO₄, respectively. The quench tower was found mainly hindering de novo synthesis by reducing reaction time. CP-route was the dominant formation pathway of PCDD/Fs in quench tower ash. Ca(OH)₂ & (NH₄)H₂PO₄ effectively inhibit precursors synthesis and reduce proportions of organic chlorine from 4.11% to 2.86%. CH₄N₂S & (NH₄)H₂PO₄ show good control effects on both de novo and precursors synthesis by reducing chlorine content and inhibiting metal-catalysts. Sulfur-containing inhibitors can cooperate well with the quench tower to inhibit PCDD/Fs formation and will be effective to reduce dioxins formation in high chlorine flue gas. The results pave the way for further industrial application of inhibition to reduce PCDD/Fs emissions in the HWIs flue gas.
Показать больше [+] Меньше [-]