Уточнить поиск
Результаты 641-650 из 783
Chemistry of the Urauchi River Water in Iriomote Island National Park, Okinawa, Japan Полный текст
2009
Ishiki, Maki | Sakihama, Hideaki | Agata, Seizen | Tokuyama, Akira
The chemical characteristics of the Urauchi River water in Iriomote Island National park, Okinawa, Japan have been studied. Concentrations of PO₄ ³⁻, NO₂ ⁻, and NH₄ ⁺ were barely detectable. We compared the concentration ratios of Mg²⁺/Na⁺, HCO₃ ⁻/Na⁺, and Ca²⁺/Na⁺ in the Urauchi River to those of 60 large rivers in the world and indicated that the chemical composition of the river is most likely formed by the binary mixing of sea salt components and silicate rock weathering components. Although rock weathering in the catchments area is driven by both H₂CO₃ and H₂SO₄, the role of H₂CO₃ is dominant. The percentages of the concentration of each cation in the river water are almost the same as those of other rivers with drainage areas consisting of silicate rock and sandstone. Thus, the Urauchi River shows the typical chemical characteristics of a river in a silicate rock area that includes sandstone.
Показать больше [+] Меньше [-]Adsorption of Sodium Dodecylbenzenesulphonate (SDBS) on Candida maltosa EH 15 Strain: Influence on Cell Surface Hydrophobicity and n-alkanes Biodegradation Полный текст
2009
Chrzanowski, Łukasz | Owsianiak, Mikołaj | Wyrwas, Bogdan | Aurich, Andreas | Szulc, Alicja | Olszanowski, Andrzej
The effect of exogenously added sodium dodecylbenzenesulphonate (SDBS) surfactant on biodegradation of a mixture of straight-chain aliphatic hydrocarbons (dodecane and hexadecane) and resulting cell surface hydrophobicity changes of Candida maltosa EH 15 were investigated. Results indicated that up to 75 mg/L SDBS improves the biodegradation potential of examined yeast. A decrease in hydrophobicity was observed when SDBS was supplemented in higher concentrations, having strong impact on biodegradation rates. Phase distribution of surfactant molecules was investigated using methylene blue active substances method (MBAS), accompanied by surface and interfacial tension measurements. Studies showed that portion of SDBS molecules adsorbed on cell surface may play significant role in interaction between anionic surfactant and yeast cells, having influence on biodegradation rates.
Показать больше [+] Меньше [-]How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops Полный текст
2009
Colbach, Nathalie
How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops Полный текст
2009
Colbach, Nathalie
Background, aim and scope Agricultural landscapes comprise cultivated fields and semi-natural areas. Biological components of these compartments such as weeds, insect pests and pathogenic fungi can disperse sometimes over very large distances, colonise new habitats via insect flight, spores, pollen or seeds and are responsible for losses in crop yield (e.g. weeds, pathogens) and biodiversity (e.g. invasive weeds). The spatiotemporal dynamics of these biological components interact with crop locations, successions and management as well as the location and management of semi-natural areas such as roadverges. The objective of this investigation was to establish a modelling and simulation methodology for describing, analysing and predicting spatiotemporal dynamics and genetics of biological components of agricultural landscapes. The ultimate aim of the models was to evaluate and propose innovative cropping systems adapted to particular agricultural concerns. The method was applied to oilseed rape (OSR) volunteers playing a key role for the coexistence of genetically modified (GM) and non-GM oilseed rape crops, where the adventitious presence of GM seeds in non-GM harvests (AGMP) could result in financial losses for farmers and cooperatives. Material and methods A multi-year, spatially explicit model was built, using field patterns, climate, cropping systems and OSR varieties as input variables, focusing on processes and cultivation techniques crucial for plant densities and pollen flow. The sensitivity of the model to input variables was analysed to identify the major cropping factors. These should be modified first when searching for solutions limiting gene flow. The sensitivity to model processes and species life-traits were analysed to facilitate the future adaptation of the model to other species. The model was evaluated by comparing its simulations to independent field observations to determine its domain of validity and prediction error. Results The cropping system study determined contrasted farm types, simulated the current situation and tested a large range of modifications compatible with each farm to identify solutions for reducing the AGMP. The landscape study simulated gene flow in a large number of actual and virtual field patterns, four combinations of regional OSR and GM proportions and three contrasted cropping systems. The analysis of the AGMP rate at the landscape level determined a maximum acceptable GM OSR area for the different cropping systems, depending on the regional OSR volunteer infestation. The analysis at the field level determined minimum distances between GM and non-GM crops, again for different cropping systems and volunteer infestations. Discussion The main challenge in building spatially explicit models of the effects of cropping systems and landscape patterns on species dynamics and gene flow is to determine the spatial extent, the time scale, the major processes and the degree of mechanistic description to include in the model, depending on the species characteristics and the model objective. Conclusions These models can be used to study the effects of cropping systems and landscape patterns over a large range of situations. The interactions between the two aspects make it impossible to extrapolate conclusions from individual studies to other cases. The advantage of the present method was to produce conclusions for several contrasted farm types and to establish recommendations valid for a large range of situations by testing numerous landscapes with contrasted cropping systems. Depending on the level of investigation (region or field), these recommendations concern different decision-makers, either farmers and technical advisors or cooperatives and public decision-makers. Recommendations and perspectives The present simulation study showed that gene flow between coexisting GM and non-GM varieties is inevitable. The management of OSR volunteers is crucial for containing gene flow, and the cropping system study identified solutions for reducing these volunteers and ferals in and outside fields. Only if these are controlled can additional measures such as isolation distances between GM and non-GM crops or limiting the proportion of the region grown with GM OSR be efficient. In addition, particular OSR varieties contribute to limit gene flow. The technical, organisational and financial feasibility of the proposed measures remains to be evaluated by a multi-disciplinary team.
Показать больше [+] Меньше [-]How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level: example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops Полный текст
2009
Colbach, Nathalie | Biologie et Gestion des Adventices (BGA) ; Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)
International audience | Background, aim and scope Agricultural landscapes comprise cultivated fields and semi-natural areas. Biological components of these compartments such as weeds, insect pests and pathogenic fungi can disperse sometimes over very large distances, colonise new habitats via insect flight, spores, pollen or seeds and are responsible for losses in crop yield (e.g. weeds, pathogens) and biodiversity (e.g. invasive weeds). The spatiotemporal dynamics of these biological components interact with crop locations, successions and management as well as the location and management of semi-natural areas such as roadverges. The objective of this investigation was to establish a modelling and simulation methodology for describing, analysing and predicting spatiotemporal dynamics and genetics of biological components of agricultural landscapes. The ultimate aim of the models was to evaluate and propose innovative cropping systems adapted to particular agricultural concerns. The method was applied to oilseed rape (OSR) volunteers playing a key role for the coexistence of genetically modified (GM) and non-GM oilseed rape crops, where the adventitious presence of GM seeds in non-GM harvests (AGMP) could result in financial losses for farmers and cooperatives. Material and methods A multi-year, spatially explicit model was built, using field patterns, climate, cropping systems and OSR varieties as input variables, focusing on processes and cultivation techniques crucial for plant densities and pollen flow. The sensitivity of the model to input variables was analysed to identify the major cropping factors. These should be modified first when searching for solutions limiting gene flow. The sensitivity to model processes and species life-traits were analysed to facilitate the future adaptation of the model to other species. The model was evaluated by comparing its simulations to independent field observations to determine its domain of validity and prediction error. Results The cropping system study determined contrasted farm types, simulated the current situation and tested a large range of modifications compatible with each farm to identify solutions for reducing the AGMP. The landscape study simulated gene flow in a large number of actual and virtual field patterns, four combinations of regional OSR and GM proportions and three contrasted cropping systems. The analysis of the AGMP rate at the landscape level determined a maximum acceptable GM OSR area for the different cropping systems, depending on the regional OSR volunteer infestation. The analysis at the field level determined minimum distances between GM and non-GM crops, again for different cropping systems and volunteer infestations. Discussion The main challenge in building spatially explicit models of the effects of cropping systems and landscape patterns on species dynamics and gene flow is to determine the spatial extent, the time scale, the major processes and the degree of mechanistic description to include in the model, depending on the species characteristics and the model objective. Conclusions These models can be used to study the effects of cropping systems and landscape patterns over a large range of situations. The interactions between the two aspects make it impossible to extrapolate conclusions from individual studies to other cases. The advantage of the present method was to produce conclusions for several contrasted farm types and to establish recommendations valid for a large range of situations by testing numerous landscapes with contrasted cropping systems. Depending on the level of investigation (region or field), these recommendations concern different decision-makers, either farmers and technical advisors or cooperatives and public decision-makers. Recommendations and perspectives The present simulation study showed that gene flow between coexisting GM and non-GM varieties is inevitable. The management of OSR volunteers is crucial for containing gene flow, and the cropping system study identified solutions for reducing these volunteers and ferals in and outside fields. Only if these are controlled can additional measures such as isolation distances between GM and non-GM crops or limiting the proportion of the region grown with GM OSR be efficient. In addition, particular OSR varieties contribute to limit gene flow. The technical, organisational and financial feasibility of the proposed measures remains to be evaluated by a multi-disciplinary team.
Показать больше [+] Меньше [-]Endosulfan in China 1--gridded usage inventories Полный текст
2009
Jia, Hongliang | Li, Yi-Fan | Wang, Degao | Cai, Daoji | Yang, Meng | Ma, Jianmin | Hu, Jianxin
Background, aim, and scope Endosulfan, an organochlorine pesticide (OCP), is genotoxic in mammalian cells and generally considered to be toxic and classified by the World Health Organization and the US Environmental Protection Agency as priority pollutants and a nominator for inclusion in a future iteration of the persistent organic pollutants treaty. Endosulfan is a currently used pesticide and still being used worldwide. The general trend of total global endosulfan use has increased continuously since the first year when this pesticide was applied. It is critical to create national endosulfan usage/emission inventories for China to carry out source-receptor relation analysis, risk assessment, and other research related to endosulfan in this country. Chinese inventories have been published for some OCPs, such as technical HCH and lindane, DDT, and chlordane; for endosulfan, however, there has not been any usage inventory available on any scales (national or provincial), although endosulfan has been widely used since 1994 in this country. This is the first part of the work. The goal of this paper is to quantify the historical production and usage of endosulfan in China and to compile gridded historical usage inventories of endosulfan for this country. Based on these usage inventories, emission and residue inventories will be created, which is the goal of the second part of the work. Materials and methods Due to the lack of national production and usage information of endosulfan in China, a method to estimate the use of endosulfan was developed. First, information of crops on which endosulfan is applied and average endosulfan use and annual application frequencies of endosulfan on these crops were collected. Secondly, usage of endosulfan on each crop was estimated using the national cropland area for each province from Chinese government reports. Finally, with the help of GIS (geographic information system), the usage data of this insecticide was allocated to a grid system, with a 1/4° longitude by 1/6° latitude resolution, with a size for each grid cell of approximately 25 km by 25 km. Results and discussion The use of endosulfan in agriculture in China started on cotton in 1994, and on wheat, tea, tobacco, apples, and other fruits in 1998. Endosulfan usage on cotton, wheat, tea, tobacco, and apples in China has been estimated to be approximately 25,700 t between 1994 and 2004. The province with the highest usage of endosulfan is Henan Province, with a total usage reaching 4,000 t, followed by the uses in Xinjiang Autonomous Region (3,200 t), Shandong Province (3,000 t), Hebei Province (2,100 t), and Anhui Province (1,900 t). Gridded usage inventories of endosulfan at a 1/4° longitude by 1/6° latitude resolution have been created, which indicate that the intensive endosulfan use was in the south of Hebei Province, west of Shandong Province, east of Henan Province, north of Anhui Province, east of Jiangsu Province, and some areas in Yunnan Province and Xinjiang Autonomous Region. General agreement has been found between the usage data from our estimation and the small amount of usage data published in China. Conclusions This is the first national gridded endosulfan usage inventory produced for China. The annual applications of endosulfan from 1994 to 2004 in China were estimated based on the total areas of major crops, on which endosulfan was applied, and spatial distribution of the application was generated at provincial and prefecture levels. With the help of GIS, endosulfan usage based on prefecture was transferred to a 1/4° longitude by 1/6° latitude gridding system. The satisfaction of the inventories was supported by the consistence between the estimation of the annual usage and the reported annual production of endosulfan. Recommendations and perspectives This gridded endosulfan usage inventory created in this study will be improved upon availability of new information of endosulfan. The usage inventories can be used to create gridded emission and residue inventories for this insecticide. It is believed that this work will pave the way for further endosulfan studies in China and beyond.
Показать больше [+] Меньше [-]Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste Полный текст
2009
Liu, Qiang | Cao, Jia | Li, Ke Qiu | Miao, Xu Hong | Li, Guang | Fan, Fei Yue | Zhao, Yong Cheng
Background, aim, and scope It has been known that the pollutants of electronic wastes (E-wastes) can lead to severe pollution to the environment. It has been reported that about 50% to 80% of E-wastes from developed countries are exported to Asia and Africa. It has become a major global environmental problem to deal with 'E-wastes'. E-waste recycling has remained primitive in Jinghai, China. This not only produces enormous environmental pollution but also can bring about toxic or genotoxic effects on the human body, threatening the health of both current residents and future generations living in the local environment. The concentration of lead in the blood of children in the E-waste polluted area in China is higher than that of the control area. But little is known about the cytogenetic effect to human beings caused by the pollution of E-wastes. In the present study, experiments have been performed to investigate the genetics of permanent residents of three villages with numerous E-waste disposal sites and to analyze the harmful effects of exposure to E-wastes. Materials and methods In total, 171 villagers (exposed group) were randomly selected from permanent residents of three villages located in Jinghai County of Tianjin, China, where there has been massive disposal of E-wastes. Thirty villagers were selected from the neighboring towns without E-waste disposal sites to serve as controls. Chromosomal aberrations and cytokinesis blocking micronucleus were performed to detect the cytogenetic effect, dic + r (dicentric and ring chromosome), monomer, fragments (acentric fragments, minute chromosomes, and acentric rings), translocation, satellite, quadriradial, total aberrations, and micronuclear rate were scored for each subject. DNA damage was detected using comet assay; the DNA percentage in the comet tail (TDNA%), tail moment (TM), and Olive tail moment (OTM) were recorded to describe DNA damage to lymphocytes. Results The total chromosome aberration rates (5.50%) and micronuclear rates (16.99%) of the exposure group were significantly higher than in the control group (P = 0.000). The percentage of DNA in the comet tail, tail moment, and Olive tail moment detected by comet assay showed that there was a significant difference in DNA damage in the exposure group (P = 0.000). The chromosome aberration, micronucleus rate, and DNA damage observed in women were significantly higher than those in men. Chromosome aberration and micronuclear rates of both smokers and non-smokers in the exposure group are obviously higher than that in the control group (P = 0.000). Discussion The use of outdated (and unsafe) ways to deal with E-wastes can lead to exposure to a variety of substances harmful to human health. The components of pollution may enter the human body through the air, drinking water, and food chain to damage human genetic material, resulting in genomic instability. The rates of chromosomal aberration, micronucleus formation, and the degree of DNA damage in women in the group exposed to electronic waste were significantly higher than in men. The reason for this may be concerned with the traditional lifestyle of the local residents or the difference of sensitivity to the exposure to E-wastes or any others. Further investigations are needed to provide evidence to demonstrate this. Conclusions Here, we report the obviously cytogenetic toxicity to the exposure population by the E-waste pollution for the first time. E-waste pollution may be a potential agent of genetic mutation, and may induce cytogenetic damage within the general population exposed to the pollution. These findings need to be considered, and steps should be taken to protect the current population and future generations from the effects of pollution with E-wastes. Recommendations and perspectives The above results remind us that the impact of E-waste recycling on environmental quality of Jinghai should be evaluated soon. Moreover, it is urgent for the government to prohibit E-waste import and its processing by outdated ways. The future studies such as pollutant details of drinking water, air, and soil in the area as well as epidemiological investigations on the harmful effect to children must be performed eagerly. All the data available do provide a compelling case for immediate action in both countries to address workplace health and safety and waste management.
Показать больше [+] Меньше [-]Part V--sorption of pharmaceuticals and personal care products Полный текст
2009
Pan, Bo | Ning, Ping | Xing, Baoshan
Background, aim, and scope Pharmaceuticals and personal care products (PPCPs) including antibiotics, endocrine-disrupting chemicals, and veterinary pharmaceuticals are emerging pollutants, and their environmental risk was not emphasized until a decade ago. These compounds have been reported to cause adverse impacts on wildlife and human. However, compared to the studies on hydrophobic organic contaminants (HOCs) whose sorption characteristics is reviewed in Part IV of this review series, information on PPCPs is very limited. Thus, a summary of recent research progress on PPCP sorption in soils or sediments is necessary to clarify research requirements and directions. Main features We reviewed the research progress on PPCP sorption in soils or sediments highlighting PPCP sorption different from that of HOCs. Special function of humic substances (HSs) on PPCP behavior is summarized according to several features of PPCP-soil or sediment interaction. In addition, we discussed the behavior of xenobiotic chemicals in a three-phase system (dissolved organic matter (DOM)-mineral-water). The complexity of three-phase systems was also discussed. Results Nonideal sorption of PPCPs in soils or sediments is generally reported, and PPCP sorption behavior is relatively a more complicated process compared to HOC sorption, such as the contribution of inorganic fractions, fast degradation and metabolite sorption, and species-specific sorption mechanism. Thus, mechanistic studies are urgently needed for a better understanding of their environmental risk and for pollution control. Discussion Recent research progress on nonideal sorption has not been incorporated into fate modeling of xenobiotic chemicals. A major reason is the complexity of the three-phase system. First of all, lack of knowledge in describing DOM fractionation after adsorption by mineral particles is one of the major restrictions for an accurate prediction of xenobiotic chemical behavior in the presence of DOM. Secondly, no explicit mathematical relationship between HS chemical-physical properties, and their sorption characteristics has been proposed. Last but not least, nonlinear interactions could exponentially increase the complexity and uncertainties of environmental fate models for xenobiotics. Discussion on proper simplification of fate modeling in the framework of nonlinear interactions is still unavailable. Conclusions Although the methodologies and concepts for studying HOC environmental fate could be adopted for PPCP study, their differences should be highly understood. Prediction of PPCP environmental behavior needs to combine contributions from various fractions of soils or sediments and the sorption of their metabolites and different species. Recommendations and perspectives More detailed studies on PPCP sorption in separated soil or sediment fractions are needed in order to propose a model predicting PPCP sorption in soils or sediments based on soil or sediment properties. The information on sorption of PPCP metabolites and species and the competition between them is still not enough to be incorporated into any predictive models.
Показать больше [+] Меньше [-]The Rhine red, the fish dead--the 1986 Schweizerhalle disaster, a retrospect and long-term impact assessment Полный текст
2009
Giger, W (Walter)
Background The November 1, 1986 fire at a Sandoz Ltd. storehouse at Schweizerhalle, an industrial area near Basel, Switzerland, resulted in chemical contamination of the environment. The storehouse, which was completely destroyed by the fire, contained pesticides, solvents, dyes, and various raw and intermediate materials. The majority of the approximately 1,250 t of stored chemicals was destroyed in the fire, but large quantities were introduced into the atmosphere, into the Rhine River through runoff of the fire-fighting water, and into the soil and groundwater at the site. The chemicals discharged into the Rhine caused massive kills of benthic organisms and fish, particularly eels and salmonids. Public and private reaction to the fire and subsequent chemical spill was very strong. This happened only a few months after the Chernobyl accident and it destroyed the myth of immunity of Switzerland regarding such catastrophes. Aim This article reviews the damaging events of November 1986 and aims at striking stock two decades later. Results and discussion In the aftermath of this once-per-century accident, the aim was to obtain new knowledge for the environmental sciences and to achieve progress for water pollution control issues. The following themes are discussed: mitigation measures by the chemical industry and by the governmental authorities, activities of environmental protection organizations, chemical and biological monitoring, alert organization, ecological damages, ecotoxicological effects assessment, recovery and alteration of the river biology, return of the salmon, drinking water supplies, research programs, education of environmental scientists, and visions for the future. Conclusions The catastrophic pollution of the Rhine in November 1986 has triggered by the openly visible damages of the river biology that subsequently significant progress was made towards the prevention of such environmental catastrophes. The crucial risk reduction measures in the chemical industry, legal regulations and controls as well as chemical and biological monitoring of the river water quality were substantially improved. Politics and chemical industry have learned their lectures and have proceeded accordingly. Recommendations A drastic acute contamination, as it has happened at Schweizerhalle in 1986, is clearly recognizable by the toxic effects, which it is causing. This can lead to mitigation activities, which are positive considering a long-term perspective. However, the less obvious effects of chronic water pollution should receive more attention as well as the ongoing alteration of the biocenosis. A high water quality must be demanded for using water from the Rhine to produce drinking water. In that context, micropollutants should also be considered and particular attention should be payed to emerging contaminants. Perspectives The big chemical storehouse fire of 1986 had an important impact on the transboundary cooperation and has improved the willingness for international cooperation. The fire catastrophe of Schweizerhalle has triggered many activities in particular for the Rhine River. Overall, the effects are positive on the basis of a long-term perspective. The applied whole basin approach gives an example on a global basis for other river systems, which still are more heavily polluted.
Показать больше [+] Меньше [-]An indispensable asset at risk: merits and needs of chemicals-related environmental sciences Полный текст
2009
Schäffer, Andreas | Hollert, Henner | Ratte, Hans Toni | Roß-Nickoll, Martina | Filser, Juliane | Matthies, Michael | Oehlmann, Joerg | Scheringer, Martin | Schulz, Ralf | Seitz, Alfred
Background Modern societies depend on environmental sustainability and on new generations of individuals well-trained by environmental research and teaching institutions. In the past, significant contributions to the identification, assessment, and management of chemical stressors with legal consequences have been made. Main Features Within this article, we intend to elucidate the merits and the emerging challenges of chemicals-related environmental sciences. The manuscript is supported by more than 70 professors and university academics of leading institutions in Germany, Switzerland, Austria, and other countries in Europe, but addresses topics of global concern. Results and Discussion Many environmental problems of pollutants remain to be addresses, since new chemical compounds or classes of new compounds are continuously developed and brought to the market and sooner or later “emerge” in the environment. Further issues are the inclusion of transformation products and chemical mixtures in environmental risk assessment, the long-term presence of xenobiotics bound to soils and sediments, as well as an understanding of the ecological relevance of ecotoxicological end points. Conclusion and Perspectives We point out the need for a strong academic research and education system in chemicals-related environmental sciences to ministries, politicians, and research funding institutions and we propose to create specific units in the national funding bodies that address basic and interdisciplinary research in this field.
Показать больше [+] Меньше [-]A field survey--Staroe lake suffering from atmospheric deposition in the region north of the Arctic Circle Полный текст
2009
Kikuchi, Ryunosuke | Gorbacheva, Tamara T
Background, aim, and scope The Arctic holds large stores of minerals, and extracted materials are provided to the world's economy; in this sense, the Arctic issue associated with mining is not local but global. In a part of the Arctic region (the Kola Peninsula, 66-70° N and 28-41° E), metal levels are generally elevated in the lake sediment. There is a question as to what results in elevated metal levels--a natural process (naturally abundant minerals) or an anthropogenic process (mining and metallurgy). In terms of solving this question, Staroe lake located on the Kola Peninsula was researched as a case study. Materials and methods The following parameters were determined in relation with Staroe lake: (1) the current quality of the lake's water--each 1,000-ml sample was collected at a surface point and a deep point (near the bottom layer), and the collected samples were directly analyzed after filtration; (2) atmospheric bulk deposition--bulk deposition was collected using a set of three rainwater samplers near the lake. In addition, bulk deposition was collected in a background site (250 km to the southwest of the smelter complex) as a reference; and (3) sediment profile (plus principal component analysis)--lake-bottom sediment was collected by an open-gravimetric column sampler equipped with an automatic diaphragm. After collection, the sample columns were cut at a 1-cm interval for analysis. Eigenvalues and variances by factor were calculated from the correlation coefficients. Results The obtained data show that (1) naturally poor elements (Cu, Ni, Si, and SO₄ ²⁻) dominantly influence the lake's water quality; (2) they are transported from the anthropogenic sources to the study lake through the atmospheric pathway; (3) mainly the contents of Cu, Ni, Sr, and Ca have influenced the sediment quality since the 1950s, corresponding to the industrial movement; and (4) Cu, Ni, and Sr originate from an anthropogenic source (smelter), and Ca originates from both natural and anthropogenic sources. Discussion As compared with the Russian standard (San Pin 2.1.980-00), the contents of NO₃ ⁻ (50.3 ± 0.1 mg l⁻¹) and particulates (2.3 ± 0.2 mg l⁻¹) exceeded the standard levels (0.7 mg l⁻¹ NO₃ ⁻ and 45 mg l⁻¹ particulates); Staroe lake may be slightly contaminated. However, the contamination factor (comparison with the background data) implies that Staroe lake is considerably contaminated. There is a strong possibility that fine overburden detritus (<0.1 mm diameter) may be transported from an open pit to the study lake by natural forces such as wind. Although it is difficult to suppose that one factor dominantly affects the sediment quality, it follows from a factor analysis that factors 1 and 2 account for about 70% of the total variance: Factor 1 is the most dominant, and factor 2 is the second most dominant in the variability of sediment quality. It is considered that Cu, Sr, and Ni in factor 1 originate from anthropogenic sources because they are poor in sediment rocks. Conclusions The field survey conducted in Staroe lake can give the following answers to the key objectives: (1) The present water quality is affected by Cu, Ni, Si, and SO₄ ²⁻ in light of the contamination factor, and these elements originate from anthropogenic sources (the smelter and the open pit) and are transported to the lake through the atmospheric pathway; (2) the sediment profile and statistic analysis show that the lake quality has been influenced by deposition of metals since the 1950s; and (3) Cu, Ni, Sr, and Ca have influenced the sediment quality in light of the most dominant factor--Cu, Ni, and Sr originate from an anthropogenic source, whereas Ca comes from both natural and anthropogenic sources. Recommendations and perspectives The presented lake survey shows that the dispersion of human-related pollutants via the atmospheric pathway takes place in the Arctic region. If the current pollution continues without countermeasures, the high-latitude environment may lose its original characteristics; hence, this subject is important when considering how to implement a wide range of environmental protection measures in the Arctic.
Показать больше [+] Меньше [-]Gas-particle partitioning of persistent organic pollutants in the Western Balkan countries affected by war conflicts Полный текст
2009
Radonic, Jelena | Sekulic, Maja Turk | Vojinović-Miloradov, Mirjana | Čupr, Pavel | Klánová, Jana
Background, aim, and scope Bombing and destruction of the industrial and military targets accompanied by complete or incomplete combustion during the war conflict and NATO operation in former Yugoslavia caused the emission of persistent organic pollutants into the atmosphere, water, and soil. A total of 129 ambient air samples from 24 background, urban, and industrial sites, including hot spots, were collected to assess a gas-particle partitioning behavior of various persistent organic pollutants. Materials and methods High volume sampling technique was applied with quartz filters that collect the atmospheric particles and polyurethane foam filters (PUF) that retain the gaseous compounds. Three to ten samples were taken at each site. GFs and PUFs were analyzed separately for their content of polychlorinated biphenyls, organochlorine pesticides, and polyaromatic hydrocarbons. Results Gas phase and particle phase concentrations of selected persistent organic pollutants (POPs) in all samples were converted into the particle-bound fractions [Greek Phi symbol]. These fractions were found to be highly variable, but generally highest in Bosnia and Herzegovina due to the elevated levels of total suspended material in ambient air. Discussion Experimental values of particle-associated fraction were compared to the Junge-Pankow model. Interestingly, a model for urban/industrial environments provided a better prediction of partitioning behavior than a model for background and rural background sites. That is probably because the total amount of atmospheric particles is higher in the Balkan region than found in the previously published studies. Conclusions Even though it has been stated in previous studies that less than 5% of polychlorinated biphenyls (PCBs) are bound to the particles, up to 67% of PCBs were particle associated at several sampling sites in this study. PCB-contaminated soils are probably still one of the strong sources of particles to the atmosphere. Recommendations and perspectives Information on the particle-bound fractions of POPs is important not only for prediction of their fate but also for an estimation of risks they can pose to the environment as well as to humans. When assessing such hazards, it has to be considered that modeled values of the particle-bound fractions can be seriously underestimated at sites with elevated levels of suspended atmospheric matter or at sites with heavily contaminated soils.
Показать больше [+] Меньше [-]